Cardiac alternans closely linked to calcium dysregulation is a crucial risk factor for fatal arrhythmia causing especially sudden death. Calcium overload is well-known to activate Ca-dependent protein kinase C (PKC); however, the effects of PKC on arrhythmogenic cardiac alternans have not yet been investigated. This study aimed to determine the contributions of PKC activities in cardiac alternans associated with calcium cycling disturbances. In the present study, action potential duration alternans (APD-ALT) induced by high free intracellular calcium ([Ca]) exerted not only in a calcium concentration-dependent manner but also in a frequency-dependent manner. High [Ca]-induced APD-ALT was suppressed by not only BAPTA-AM but also nifedipine. On the other hand, PKC inhibitors BIM and Gö 6976 eliminated high [Ca]-induced APD-ALT, and PKC activator PMA was found to induce APD-ALT at normal [Ca] condition. Furthermore, BIM effectively prevented calcium transient alternans (CaT-ALT) and even CaT disorders caused by calcium overload. Moreover, BIM not only eliminated electrocardiographic T-wave alternans (TWA) caused by calcium dysregulation, but also lowered the incidence of ventricular arrhythmias in isolated hearts. What's more, BIM prevented the expression of PKC α upregulated by calcium overload in high calcium-perfused hearts. We firstly found that pharmacologically inhibiting Ca-dependent PKC over-activation suppressed high [Ca]-induced cardiac alternans. This recognition indicates that inhibition of PKC activities may become a therapeutic target for the prevention of pro-arrhythmogenic cardiac alternans associated with calcium dysregulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00424-021-02574-7 | DOI Listing |
Physiol Rep
December 2024
Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan.
Cardiac alternans (C-ALT) is a phenomenon of alternating strong and weak contractions in the heart and is considered a risk factor for the development of heart failure and arrhythmias. However, no model has been reported that can induce C-ALT in vitro using human cells, and the developmental mechanism of C-ALT has not been studied using human cells. In this study, we successfully induced C-ALT in vitro using human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs).
View Article and Find Full Text PDFBackground: Loss of stromal interaction molecule 1 (STIM1) expression in smooth muscle cells protects against ischemia-reperfusion (I/R) injury. Whether and how decreased STIM1 expression in cardiomyocytes (CM) impacts cardiac remodeling in response to I/R injury remains unknown.
Objective: To examine mechanisms by which decreased CM-STIM1 expression in the adult heart modulates cardiac function before and after I/R injury.
J Mol Cell Cardiol Plus
December 2024
Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China.
Unlabelled: Abnormal regional variations in electrical and calcium homeostasis properties have been implicated in catecholaminergic polymorphic ventricular tachycardias (CPVT) attributable to abnormal RyR2-mediated store Ca release, but their underlying mechanism have not been well explored in intact hearts.
Methods: We performed in vivo and ex vivo studies including high throughput mapping of Ca transients (CaT) and transmembrane voltage (V) in murine wild-type (WT) and heterozygous -R2474S/+ hearts, before and during isoprenaline (ISO) challenge.
Results: ISO-challenged -R2474S/+ showed increased incidence of arrhythmia accompanied by abnormal Ca transients compared to WT.
bioRxiv
November 2024
Department of Physics and Astronomy, California State University, Northridge.
Curr Issues Mol Biol
November 2024
School of Systems Biology, George Mason University, Fairfax, VA 22030, USA.
Mutations in the ryanodine receptor (RyR2) gene have been linked to arrhythmia and possibly sudden cardiac death (SCD) during acute emotional stress, physical activities, or catecholamine perfusion. The most prevalent disorder is catecholaminergic polymorphic ventricular tachycardia (CPVT1). Four primary mechanisms have been proposed to describe CPVT1 with a RyR2 mutation: (a) gain-of-function, (b) destabilization of binding proteins, (c) store-overload-induced Ca release (SOICR), and (d) loss of function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!