Methionine oxidation and reduction is a common phenomenon occurring in biological systems under both physiological and oxidative-stress conditions. The levels of methionine sulfoxide (MetO) are dependent on the redox status in the cell or organ, and they are usually elevated under oxidative-stress conditions, aging, inflammation, and oxidative-stress related diseases. MetO modification of proteins may alter their function or cause the accumulation of toxic proteins in the cell/organ. Accordingly, the regulation of the level of MetO is mediated through the ubiquitous and evolutionary conserved methionine sulfoxide reductase (Msr) system and its associated redox molecules. Recent published research has provided new evidence for the involvement of free MetO or protein-bound MetO of specific proteins in several signal transduction pathways that are important for cellular function. In the current review, we will focus on the role of MetO in specific signal transduction pathways of various organisms, with relation to their physiological contexts, and discuss the contribution of the Msr system to the regulation of the observed MetO effect.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00726-021-03020-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!