The negative impact of extreme high-temperature days (EHDs) on people's livelihood has increased over the past decades. Therefore, an improved understanding of the fundamental mechanisms of EHDs is imperative to mitigate this impact. Herein, we classify the large-scale atmospheric circulation patterns associated with EHDs that occurred in South Korea from 1982 to 2018 using a self-organizing map (SOM) and investigate the dynamic mechanism for each cluster pattern through composite analysis. A common feature of all SOM clusters is the positive geopotential height (GPH) anomaly over the Korean Peninsula, which provides favorable conditions for EHDs through adiabatic warming caused by anomalous downward motion. Results show that Cluster 1 (C1) is related to the eastward-propagating wave train in the mid-latitude Northern Hemisphere, while Cluster 2 (C2) and 3 (C3) are influenced by a northward-propagating wave train forced by enhanced convection in the subtropical western North Pacific (WNP). Compared to C2, C3 exhibits strong and eastward-extended enhanced convection over the subtropical WNP, which generates an anomalous high-pressure system over the southern part of the Kamchatka Peninsula, reinforcing EHDs via atmospheric blocking. Our results can contribute to the understanding of East Asia climate variability because wave trains influence the climate dynamics of this region.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8213777PMC
http://dx.doi.org/10.1038/s41598-021-92368-9DOI Listing

Publication Analysis

Top Keywords

atmospheric circulation
8
circulation patterns
8
patterns associated
8
south korea
8
wave train
8
enhanced convection
8
convection subtropical
8
ehds
5
three distinct
4
distinct atmospheric
4

Similar Publications

Tropical Indian Ocean drives Hadley circulation change in a warming climate.

Natl Sci Rev

January 2025

Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu 610225, China.

The weakening and poleward expansion of the Hadley circulation (HC) are considered robust responses of atmospheric meridional circulation to anthropogenic warming. Climate impacts arising from these changes enhance drought conditions and reduce food production in the affected regions. Therefore, understanding the mechanisms of HC changes is critical to anticipating the resultant climate risks.

View Article and Find Full Text PDF

Acute respiratory infections (ARI) are a leading cause of global morbidity and mortality and they're primarily caused by viruses such as rhinovirus, coronavirus, and respiratory syncytial virus (RSV), and to a lesser extent by bacteria like Streptococcus pneumoniae and Mycoplasma pneumoniae. The study examines the impact of COVID-19 control measures on the circulation of respiratory pathogens, indicating a reduction in infections during the pandemic period. A retrospective study was conducted on 1,286 patients at the "G.

View Article and Find Full Text PDF

Two types of heavy precipitation in the southeastern Tibetan Plateau.

Sci Bull (Beijing)

December 2024

Alpine Paleoecology and Human Adaptation Group (ALPHA), State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.

The southeastern Tibetan Plateau (SETP) is the preeminent summer heavy precipitation region within the Tibetan Plateau (TP). However, the large-scale circulation types and dynamics driving summer heavy precipitation in the SETP remain inadequately elucidated. Using the hierarchical clustering method, two distinctive atmospheric circulation patterns associated with heavy precipitation were identified: the Tibetan Plateau vortex type (TPVT, constituting 56.

View Article and Find Full Text PDF

Transition from multi-year La Niña to strong El Niño rare but increased under global warming.

Sci Bull (Beijing)

December 2024

NOAA/Pacific Marine Environmental Laboratory, Seattle, Washington DC 20005, USA.

El Niño-Southern Oscillation (ENSO) exhibits a strong asymmetry between warm El Niño and cold La Niña in amplitude and temporal evolution. An El Niño often leads to a heat discharge in the equatorial Pacific conducive to its rapid termination and transition to a La Niña, whereas a La Niña persists and recharges the equatorial Pacific for consecutive years preconditioning development of a subsequent El Niño, as occurred in 2020-2023. Whether the multiyear-long heat recharge increases the likelihood of a transition to a strong El Niño remains unknown.

View Article and Find Full Text PDF

Trophic ecology in an anchialine cave: A stable isotope study.

PLoS One

January 2025

Colección Nacional de Crustáceos, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico, Ciudad de México, Mexico.

Article Synopsis
  • Carbon and nitrogen stable isotopes (δ13C and δ15N) are valuable tools in ecology for tracing energy flows in food webs, particularly in underexplored ecosystems like anchialine caves.
  • Sampling at Cenote Vaca Ha in Mexico revealed insights into the nutrient sources for seven endemic stygobitic species, highlighting that isotopic patterns are consistent over time despite some variation.
  • The study identified shrimp Typhlatya pearsei as a crucial species linking chemosynthetic microbial production to the anchialine food web, indicating a stable ecosystem reliant on bacterial sources for energy.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!