Bipolar disorder is a severe mental illness characterized by recurrent manic and depressive episodes. To better understand its genetic architecture, we analyze ultra-rare de novo mutations in 354 trios with bipolar disorder. For germline de novo mutations, we find significant enrichment of loss-of-function mutations in constrained genes (corrected-P = 0.0410) and deleterious mutations in presynaptic active zone genes (FDR = 0.0415). An analysis integrating single-cell RNA-sequencing data identifies a subset of excitatory neurons preferentially expressing the genes hit by deleterious mutations, which are also characterized by high expression of developmental disorder genes. In the analysis of postzygotic mutations, we observe significant enrichment of deleterious ones in developmental disorder genes (P = 0.00135), including the SRCAP gene mutated in two unrelated probands. These data collectively indicate the contributions of both germline and postzygotic mutations to the risk of bipolar disorder, supporting the hypothesis that postzygotic mutations of developmental disorder genes may contribute to bipolar disorder.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8213845 | PMC |
http://dx.doi.org/10.1038/s41467-021-23453-w | DOI Listing |
Int J Bipolar Disord
December 2024
Department for Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt-Goethe University, Frankfurt am Main, Germany.
Background: Attention-deficit/hyperactivity disorder (ADHD) is a common neuro-developmental disorder that often persists into adulthood. Moreover, it is frequently accompanied by bipolar disorder (BD) as well as borderline personality disorder (BPD). It is unclear whether these disorders share underlying pathomechanisms, given that all three are characterized by alterations in affective states, either long or short-term.
View Article and Find Full Text PDFZh Nevrol Psikhiatr Im S S Korsakova
December 2024
Mental Health Research Center, Moscow, Russia.
Mental disorders are complex illnesses with multifactorial etiologies involving genetic and environmental components. This review focuses on cellular models derived from the olfactory epithelium as a promising tool to study the molecular mechanisms of some neuropsychiatric diseases. The authors consider cell lines allowing the identification of potential biomarkers and pathogenetic mechanisms of schizophrenia, bipolar disorder, and Alzheimer's disease.
View Article and Find Full Text PDFJ Control Release
December 2024
Department of Chemical Engineering, McMaster University, 1280 Main Street, West Hamilton, ON L8S 4L8, Canada. Electronic address:
While bipolar disorder patients can benefit from lithium therapy, high levels of lithium in the serum can induce undesirable systemic side effects. Intranasal (IN) lithium delivery offers a potential solution to this challenge given its potential to facilitate improved lithium transport to brain when delivered to the olfactory mucosa. Herein, a sprayable, in situ forming nanoparticle network hydrogel (NNH) based on Schiff base interactions between chelator-functionalized oxidized starch nanoparticles (SNPs) and carboxymethyl chitosan (CMCh) is reported that can be deployed within the nasal cavity to release ultra-small penetrative SNPs over time.
View Article and Find Full Text PDFEur Arch Psychiatry Clin Neurosci
December 2024
Department of Psychiatry, University of Muenster, Muenster, Germany.
Schizophrenia (SCZ), bipolar (BD) and major depression disorder (MDD) are severe psychiatric disorders that are challenging to treat, often leading to treatment resistance (TR). It is crucial to develop effective methods to identify and treat patients at risk of TR at an early stage in a personalized manner, considering their biological basis, their clinical and psychosocial characteristics. Effective translation of theoretical knowledge into clinical practice is essential for achieving this goal.
View Article and Find Full Text PDFCurr Issues Mol Biol
November 2024
Systems Biology Unit, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain.
Neurological disorders such as Autism Spectrum Disorder (ASD), Schizophrenia (SCH), Bipolar Disorder (BD), and Major Depressive Disorder (MDD) affect millions of people worldwide, yet their molecular mechanisms remain poorly understood. This study describes the application of the Comparative Analysis of Shapley values (CASh) to transcriptomic data from nine datasets associated with these complex disorders, demonstrating its effectiveness in identifying differentially expressed genes (DEGs). CASh, which combines Game Theory with Bootstrap resampling, offers a robust alternative to traditional statistical methods by assessing the contribution of each gene in the broader context of the complete dataset.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!