Cellular stress can induce cytoplasmic ribonucleoprotein complexes called stress granules that allow the cells to survive. Stress granules are also central to cellular responses to infections, in which they can act as platforms for viral sensing or modulate innate immune signaling through pattern recognition receptors. However, the effect of innate immune signaling on stress granules is poorly understood. In this study, we report that prior induction of innate immune signaling through TLRs inhibited stress granule assembly in a TLR ligand dose-dependent manner in murine bone marrow-derived macrophages. Time course analysis suggests that TLR stimulation can reverse stress granule assembly even after it has begun. Additionally, both MYD88- and TRIF-mediated TLR signaling inhibited stress granule assembly in response to endoplasmic reticulum stress in bone marrow-derived macrophages and the chemotherapeutic drug oxaliplatin in murine B16 melanoma cells. This inhibition was not due to a decrease in expression of the critical stress granule proteins G3BP1 and DDX3X and was independent of IRAK1/4, JNK, ERK and P38 kinase activity but dependent on IKK complex kinase activity. Overall, we have identified the TLR-IKK complex signaling axis as a regulator of stress granule assembly-disassembly dynamics, highlighting cross-talk between processes that are critical in health and disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631289PMC
http://dx.doi.org/10.4049/jimmunol.2100115DOI Listing

Publication Analysis

Top Keywords

stress granule
24
innate immune
16
immune signaling
16
granule assembly
16
stress granules
12
stress
11
inhibited stress
8
bone marrow-derived
8
marrow-derived macrophages
8
kinase activity
8

Similar Publications

The increasing incidence of neurodegenerative diseases (NDs) and the constraints of existing treatment methods have spurred a keen interest in investigating alternative therapies. Medicinal plants, renowned for their long-standing use in traditional medicine, offer a hopeful avenue for discovering new neuroprotective agents. This study emphasizes the potential neuroprotective characteristics of edible fruit plants in Bangladesh, specifically focusing on their traditional folk medicine uses for neurological disorders.

View Article and Find Full Text PDF

Non-covalent interactions of poly(ADP-ribose) (PAR) facilitate condensate formation, yet the impact of these interactions on condensate properties remains unclear. Here, we demonstrate that PAR-mediated interactions through PARP13, specifically the PARP13.2 isoform, are essential for modulating the dynamics of stress granules-a class of cytoplasmic condensates that form upon stress, including types frequently observed in cancers.

View Article and Find Full Text PDF

The dysfunction of stress granules (SGs) plays a crucial role in the pathogenesis of various neurological disorders, with T cell intracellular antigen 1 (TIA1) being a key component of SGs. However, the role and mechanism of TIA1-mediated SGs in experimental autoimmune encephalomyelitis (EAE) remain unclear. In this study, upregulation of TIA1, its translocation from the nucleus to the cytoplasm, and co-localization with G3BP1 (a marker of SGs) are observed in the spinal cord neurons of EAE mice.

View Article and Find Full Text PDF

Intracellular liquid-liquid phase separation (LLPS) of proteins and nucleic acids is a fundamental mechanism by which cells compartmentalize their components and perform essential biological functions. Molecular simulations play a crucial role in providing microscopic insights into the physicochemical processes driving this phenomenon. In this study, we systematically compare six state-of-the-art sequence-dependent residue-resolution models to evaluate their performance in reproducing the phase behaviour and material properties of condensates formed by seven variants of the low-complexity domain (LCD) of the hnRNPA1 protein (A1-LCD)-a protein implicated in the pathological liquid-to-solid transition of stress granules.

View Article and Find Full Text PDF

Simultaneous nitrogen removal and phosphorus recovery in granular sludge-based partial denitrification/anammox-hydroxyapatite precipitation (PD/A-HAP) process under low C/N ratio and dissolved oxygen limitation.

Bioresour Technol

January 2025

School of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China; Zhengzhou Key Laboratory of Water Safety and Water Ecology Technology, Zhengzhou 450001, China; Henan International Joint Laboratory of Environmental Pollution Remediation and Grain Quality Security, Zhengzhou 450001, China.

This study integrates partial denitrification/Anammox (PD/A) with hydroxyapatite (HAP) crystallization in a single reactor, achieving simultaneous nitrogen and phosphorus removal along with phosphorus recovery. By adjusting pH, sludge concentration, low COD/TN ratio, and applying moderate dissolved oxygen stress, the system operated stably and promoted the synergistic growth of HAP and biomass. Results showed a nitrogen removal efficiency (NRE) of 94.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!