The critical step for future quantum industry demands realization of efficient information exchange between different-platform hybrid systems that can harvest advantages of distinct platforms. The major restraining factor for the progress in certain hybrids is weak coupling strength between the elemental particles. In particular, this restriction impedes a promising field of hybrid magnonics. In this work, we propose an approach for realization of on-chip hybrid magnonic systems with unprecedentedly strong coupling parameters. The approach is based on multilayered microstructures containing superconducting, insulating, and ferromagnetic layers with modified photon phase velocities and magnon eigenfrequencies. The enhanced coupling strength is provided by the radically reduced photon mode volume. Study of the microscopic mechanism of the photon-to-magnon coupling evidences formation of the long-range superconducting coherence via thick strong ferromagnetic layers in superconductor/ferromagnet/superconductor trilayer in the presence of magnetization precession. This discovery offers new opportunities in microwave superconducting spintronics for quantum technologies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8213224 | PMC |
http://dx.doi.org/10.1126/sciadv.abe8638 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!