AI Article Synopsis

  • Chromosomal fragile sites contribute to genome instability, which can lead to cancers and neurological diseases, but their exact causes are not fully understood.
  • The study identifies three specific fragile sites in the genome and details the DNA damage and repair processes occurring at these sites.
  • The research reveals that these fragile regions exhibit unique DNA breakage patterns due to replication issues and sister chromosome shearing, suggesting that these mechanisms could be common contributors to genetic instability in humans and related diseases.

Article Abstract

Chromosomal fragile sites are implicated in promoting genome instability, which drives cancers and neurological diseases. Yet, the causes and mechanisms of chromosome fragility remain speculative. Here, we identify three spontaneous fragile sites in the genome and define their DNA damage and repair intermediates at high resolution. We find that all three sites, all in the region of replication termination, display recurrent four-way DNA or Holliday junctions (HJs) and recurrent DNA breaks. Homology-directed double-strand break repair generates the recurrent HJs at all of these sites; however, distinct mechanisms of DNA breakage are implicated: replication fork collapse at natural replication barriers and, unexpectedly, frequent shearing of unsegregated sister chromosomes at cell division. We propose that mechanisms such as both of these may occur ubiquitously, including in humans, and may constitute some of the earliest events that underlie somatic cell mosaicism, cancers, and other diseases of genome instability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8213236PMC
http://dx.doi.org/10.1126/sciadv.abe2846DOI Listing

Publication Analysis

Top Keywords

mechanisms chromosome
8
chromosome fragility
8
fragile sites
8
genome instability
8
sites
5
mechanisms
4
fragility replication-termination
4
replication-termination sites
4
sites bacteria
4
bacteria chromosomal
4

Similar Publications

A variant W chromosome in Centromochlus heckelii (Siluriformes, Auchenipteridae) and the role of repeated DNA in its heteromorphism.

Genet Mol Biol

January 2025

Instituto Nacional de Pesquisas da Amazônia, Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva (PPG GCBEv), Manaus, AM, Brazil.

Centromochlus heckelii has the lowest diploid chromosome number (2n = 46) and the only described heteromorphic sex chromosome system in Auchenipteridae. This study presents a population of C. heckelii from the Central Amazon basin with subtle variations in the karyotype composition and a variant W chromosome with distinct morphology and increased C-positive heterochromatin content.

View Article and Find Full Text PDF

Structural maintenance of chromosomes (SMC) are ubiquitously distributed proteins involved in chromosome organization. Deletion of causes severe growth phenotypes in many organisms. Surprisingly, can be deleted in , a member of the phylum, without any apparent growth phenotype.

View Article and Find Full Text PDF

Green rice leafhopper (GRH, Uhler) is a serious insect pest of rice in the temperate regions of Asia. Myanmar has a high genetic diversity and is located at the center of the origin of rice. To understand the genetic architecture of GRH resistance in Myanmar rice landraces, a genome-wide association study (GWAS) was performed using a diversity panel collected from diverse geographical regions.

View Article and Find Full Text PDF

Targeting CRM1 for Progeria Syndrome Therapy.

Aging Cell

January 2025

Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados, Ciudad de México, Mexico.

Hutchinson-Gilford progeria syndrome (HGPS) is a premature aging disease caused by progerin, a mutant variant of lamin A. Progerin anchors aberrantly to the nuclear envelope disrupting a plethora of cellular processes, which in turn elicits senescence. We previously showed that the chromosomal region maintenance 1 (CRM1)-driven nuclear export pathway is abnormally enhanced in patient-derived fibroblasts, due to overexpression of CRM1.

View Article and Find Full Text PDF

The characteristics of aminotransferases gene family in Ruditapes philippinarum and its response to salinity stresses.

Comp Biochem Physiol C Toxicol Pharmacol

January 2025

College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China.

Aminotransferase is involved in the regulation of amino acid metabolism, which can affect the balance and distribution of amino acids in the organism, help maintain the homeostasis of amino acids in the organism, and play an important role in the environmental adaptation of aquatic animals. In this study, a total of 28 aminotransferase genes were identified in the genome of R. philippinarum.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!