This work investigates the effect of anhydrogen plasma treatment on gate bias stability and performance of amorphous InGaZnO thin-film transistors (TFTs) deposited by using atmospheric-pressure PECVD. The Hplasma-treated-IGZO channel has shown significant improvement in bias stress induced instability with a minuscule threshold voltage shift (Δ) of 0.31 and -0.17 V under positive gate bias stress (PBS) and negative gate bias stress (NBS), respectively. With the aid of the energy band diagram, the proposed work demonstrates the formation of negative species Oand positive species HOin the backchannel under PBS and NBS in addition to ionized oxygen vacancy (V) defects at-IGZO/ZrOinterfaces are the reason for gate bias instability which could be effectively suppressed withHplasma treatment. From the experimental result, it is observed that the electrical performance such as field-effect mobility (), on-off current ratio (/), and subthreshold swing improved significantly byHplasma treatment with passivation of interface trap density and bulk trap defects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/ac0cb0 | DOI Listing |
Sensors (Basel)
January 2025
School of Mechanical and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Silicon carbide (SiC) metal oxide semiconductor field-effect transistors (MOSFETs) are a future trend in traction inverters in electric vehicles (EVs), and their thermal safety is crucial. Temperature-sensitive electrical parameters' (TSEPs) indirect detection normally requires additional circuits, which can interfere with the system and increase costs, thereby limiting applications. Therefore, there is still a lack of cost-effective and sensorless thermal monitoring techniques.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Electrical Engineering and Computer Science (EECS), Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
A transistor design employing all vertically stacked components has attracted considerable attention due to the simplicity of the fabrication process and the high conductivity easily realized by achieving nanolevel short channel lengths with two-dimensional current paths. However, fundamental issues, specifically the blocking of the gate electrical field to the semiconductive channel layer and high leakage current at the "off" state, have impeded this configuration in becoming a major transistor design. To address these issues, it has been proposed to introduce a blocking layer (BL) with embedded hole structures and source electrode with embedded hole structures, enhancing gate field penetration and carrier modulation.
View Article and Find Full Text PDFNanoscale
January 2025
State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, China.
Two-dimensional (2D) organic-inorganic halide perovskites are promising sensitive materials for optoelectronic applications due to their strong light-matter interactions, layered structure, long carrier lifetime and diffusion length. However, a high gate bias is indispensable for perovskite-based phototransistors to optimize detection performances, since ion migration seriously screens the gate electric field and the deposition process introduces intrinsic defects, which induces severe leakages and large power dissipation. In this work, an ultrasensitive phototransistor based on the (PEA)SnI perovskite and the Al:HfO ferroelectric layer is meticulously studied, working without an external gate voltage.
View Article and Find Full Text PDFACS Omega
January 2025
School of Integrated Technology, Yonsei University, Seoul 03722, Republic of Korea.
We developed a two-transistor, zero-capacitor (2T0C) gain-cell memory featuring a self-aligned top-gate-structured thin-film transistor (TFT) for the first time. The proposed indium tin zinc oxide (ITZO) channel-incorporated architecture was specifically engineered to minimize parasitic capacitance for achieving long-retention 2T0C memory operations. A typical 2T0C structure features five types of parasitic capacitances; however, the proposed SATG design effectively used an essential gate insulator capacitance ( ) and reduced four nonessential capacitances ( , , , and ) to virtually zero.
View Article and Find Full Text PDFACS Nano
January 2025
Center of Free Electron Laser & High Magnetic Field, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China.
Recently, two-dimensional (2D) van der Waals (vdW) magnetic materials have emerged as a promising platform for studying exchange bias (EB) phenomena due to their atomically flat surfaces and highly versatile stacking configurations. Although complex spin configurations between 2D vdW interfaces introduce challenges in understanding their underlying mechanisms, they can offer more possibilities in realizing effective manipulations. In this study, we present a spin-orthogonal arranged 2D FeGaTe (FGaT)/CrSBr vdW heterostructure, realizing the EB effect with the bias field as large as 1730 Oe at 2 K.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!