Automated segmentation of left ventricular cavity (LVC) in temporal cardiac image sequences (consisting of multiple time-points) is a fundamental requirement for quantitative analysis of cardiac structural and functional changes. Deep learning methods for segmentation are the state-of-the-art in performance; however, these methods are generally formulated to work on a single time-point, and thus disregard the complementary information available from the temporal image sequences that can aid in segmentation accuracy and consistency across the time-points. In particular, single time-point segmentation methods perform poorly in segmenting the end-systole (ES) phase image in the cardiac sequence, where the left ventricle deforms to the smallest irregular shape, and the boundary between the blood chamber and the myocardium becomes inconspicuous and ambiguous. To overcome these limitations in automatically segmenting temporal LVCs, we present a spatial sequential network (SS-Net) to learn the deformation and motion characteristics of the LVCs in an unsupervised manner; these characteristics are then integrated with sequential context information derived from bi-directional learning (BL) where both chronological and reverse-chronological directions of the image sequence are used. Our experimental results on a cardiac computed tomography (CT) dataset demonstrate that our spatial-sequential network with bi-directional learning (SS-BL-Net) outperforms existing methods for spatiotemporal LVC segmentation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compmedimag.2021.101952DOI Listing

Publication Analysis

Top Keywords

left ventricular
8
ventricular cavity
8
spatial sequential
8
sequential network
8
computed tomography
8
image sequences
8
single time-point
8
bi-directional learning
8
segmentation
6
automatic left
4

Similar Publications

Background: Long-term consumption of Western Diet (WD) is a well-established risk factor for the development of cardiovascular disease (CVD); however, there is a paucity of studies on the long-term effects of WD on the pathophysiology of CVD and sex-specific responses.

Methods: Our study aimed to investigate the sex-specific pathophysiological changes in left ventricular (LV) function using transthoracic echocardiography (ECHO) and LV tissue transcriptomics in WD-fed C57BL/6 J mice for 125 days, starting at the age of 300 through 425 days.

Results: In female mice, consumption of the WD diet showed long-term effects on LV structure and possible development of HFpEF-like phenotype with compensatory cardiac structural changes later in life.

View Article and Find Full Text PDF

Previous studies demonstrated that dexmedetomidine (Dex) posttreatment aggravated myocardial dysfunction and reduced survival in septic mice. Yet, whether Dex elicits similar effects in septic patients as defined by Sepsis-3 remains unknown. This study sought to assess the effects of Dex-based sedation on mortality and cardiac dysfunction in septic patients defined by Sepsis-3 and to further reveal the mechanisms in septic rats.

View Article and Find Full Text PDF

Background: Interventricular dyssynchrony derived from the classic non-physiological stimulation (n-PS) of the right ventricle (RV) is a known cause of left ventricular dysfunction (LVDys).

Methods: This was a prospective descriptive single-center study. We analyzed patients who develop LVDys with n-PS, and the results after upgrading to conduction system pacing (CSP).

View Article and Find Full Text PDF

Fibrosis is the main pathological feature of aortic stiffness, which is a common extracardiac comorbidity of heart failure with preserved ejection fraction (HFpEF) and a contributor to left ventricular (LV) diastolic dysfunction. Systemic low-grade inflammation plays a crucial role in the pathogenesis of HFpEF and the development of vascular fibrosis. In this study, we investigate the inflammatory mechanism of aortic fibrosis in HFpEF using a novel mouse model.

View Article and Find Full Text PDF

The correlation between Fischer's ratio and the risk of cardiac dysfunction in heart failure patients.

BMC Cardiovasc Disord

December 2024

Department of Cardiovascular Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China.

Backgrounds: Due to the high mortality and hospitalization rate in chronic heart failure (HF), it is of great significance to study myocardial nutrition conditions. Amino acids (AAs) are essential nutrient metabolites for cell development and survival. This study aims to investigate the associations and prognostic value of plasma branched-chain amino acid/aromatic amino acid ratio (Fischer's ratio, FR) in patients with left ventricular ejection fraction (LVEF) ≤ 50%.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!