Co-amorphization has been utilized to improve the physical stability of the respective neat amorphous drugs. However, physical stability of co-amorphous systems is mostly investigated under dry conditions, leaving the potential influence of moisture on storage stability unclear. In this study, carvedilol-L-aspartic acid (CAR-ASP) co-amorphous systems at CAR to ASP molar ratios from 3:1 to 1:3 were investigated under non-dry conditions at two temperatures, i.e., 25 °C 55 %RH and 40 °C 55 %RH. Under these conditions, the highest physical stability of CAR-ASP systems was observed at the 1:1 M ratio. This finding differed from the optimal molar ratio previously obtained under dry conditions (CAR-ASP 1:1.5). Molecular interactions between CAR and ASP were affected by moisture, and salt disproportionation occurred during storage. Morphological differences of systems at different molar ratios could be observed already after one week of storage. Furthermore, variable temperature X-ray powder diffraction measurements showed that excess CAR or excess ASP, existing in the binary systems, resulted in a faster recrystallization compared to equimolar system. Overall, this study emphasizes the influence of moisture on co-amorphous systems during storage, and provides options to determine the optimal ratio of co-amorphous systems in presence of moisture at comparatively short storage times.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2021.120802 | DOI Listing |
Pharmaceutics
December 2024
Department of Pharmacy, Faculty of Health and Medical Science, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
: This study aims to broaden the knowledge on co-amorphous phospholipid systems (CAPSs) by exploring the formation of CAPSs with a broader range of poorly water-soluble drugs, celecoxib (CCX), furosemide (FUR), nilotinib (NIL), and ritonavir (RIT), combined with amphiphilic phospholipids (PLs), including soybean phosphatidylcholine (SPC), hydrogenated phosphatidylcholine (HPC), and mono-acyl phosphatidylcholine (MAPC). : The CAPSs were initially prepared at equimolar drug-to-phospholipid (PL) ratios by mechano-chemical activation-based, melt-based, and solvent-based preparation methods, i.e.
View Article and Find Full Text PDFSci Rep
December 2024
College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China.
Drug-drug co-amorphous systems are a promising approach to improve the aqueous solubility of poorly water-soluble drugs. This study explores the combination of breviscapine (BRE) and matrine (MAT) form an amorphous salt, aiming to synergistically enhance the solubility and dissolution of BRE. In silico analysis of electrostatic potential and local ionization energy were conducted on BRE-MAT complex to predict the intermolecular interactions, and solvent-free energies were calculated using thermodynamic integration and density functional theory.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
November 2024
School of Pharmacy, RK University, Kasturbadham, Rajkot, Gujarat, 360020, India.
The study aims to enhance the solubility and dissolution characteristics of efonidipine hydrochloride ethanolate (EFD), an antihypertensive drug, through the co-amorphous approach. Hypertension is a prevalent chronic condition characterized by consistently elevated blood pressure. Efonidipine, a BCS class II drug, has high permeability but low solubility, limiting its therapeutic effectiveness.
View Article and Find Full Text PDFMolecules
November 2024
School of Chemical Engineering, Shandong Institute of Petroleum and Chemical Technology, Dongying 257061, China.
The objective of this work was to improve the solubility and discover a stable co-amorphous form of valsartan (VAL), a BCS class-II drug, by utilizing small molecule 2-Aminopyridine (2-AP) in varying molar ratios (2:1, 1:1, and 1:2), employing a solvent evaporation technique. Additionally, by way of a density functional theory (DFT)-based computational method with commercially available software, a new approach for determining the intermolecular connectivity of multi-molecular hydrogen bonding systems was proposed. The binary systems' features were characterized by PXRD, DSC, FTIR, and Raman spectroscopy, while the equilibrium solubility and dissolution was determined in 0.
View Article and Find Full Text PDFInt J Pharm
December 2024
Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China; Wenzhou Institute, University of Chinese Academy of Science, Wenzhou 325024, Zhejiang, China. Electronic address:
Developing co-amorphous systems is a promising strategy to improve the water solubility of poorly water-soluble drugs. Most of the studies focused on the initial dissolution rate of the fresh co-amorphous systems, and only physical stability was investigated after storage. However, the maintenance of the enhanced dissolution rate of co-amorphous systems after storage is necessary for further product development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!