Sigma-2 receptor/transmembrane protein 97 (TMEM97) is upregulated in cancer cells compared to normal cells. Traditional sigma-2 receptor agonists induce apoptosis and autophagy, making them of interest in cancer therapy. Recently, we reported a novel metabolically stimulative function of the sigma-2 receptor, showing increased 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction and stimulation of glycolytic hallmarks. 6-Substituted analogs of the canonical sigma-2 receptor antagonist, 6-acetyl-3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)benzo[d]oxazol-2(3H)-one (SN79), produce both metabolically stimulative and cytotoxic effects. Here, we compare the activities of two related compounds: 6-amino-3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)benzo[d]oxazol-2(3H)-one (CM571), the 6-amino derivative of SN79, which binds with high affinity to both sigma-1 and sigma-2 receptors, and 1,3-bis(3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)-2-oxo-2,3-dihydrobenzo[d]oxazol-6-yl)thiourea (MAM03055A), a homo-bivalent dimer of CM571. MAM03055A resulted from the degradation of 3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)-6-isothiocyanatobenzo[d]oxazol-2(3H)-one (CM572), the cytotoxic 6-isothiocyanato SN79 derivative. MAM03055A exhibited high affinity and strong preference for sigma-2 receptors (sigma-1 K = 3371 nM; sigma-2 receptor K = 55.9 nM). Functionally, MAM03055A treatment potently induced cell death in SK-N-SH neuroblastoma, MDA-MB-231 breast, and both SW48 and SW480 colorectal cancer cell lines, causing proapoptotic BH3 interacting-domain death agonist (BID) cleavage in SK-N-SH cells. Conversely, CM571 induced metabolic stimulation. CM571 bound reversibly to both receptors, while MAM03055A bound pseudo-irreversibly to sigma-2 receptors and caused residual cytotoxic activity after acute exposure and removal of the compound from the media. Interestingly, MAM03055A induced a time-dependent loss of sigma-2 receptor/TMEM97 protein from cells, whereas monomer CM571 had no effect on receptor levels. These results suggest that monovalent and bivalent sigma-2 receptor ligands in this series interact differently with the receptor, thus resulting in divergent effects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8736263PMC
http://dx.doi.org/10.1016/j.ejphar.2021.174263DOI Listing

Publication Analysis

Top Keywords

sigma-2 receptor
20
sigma-2 receptors
12
sigma-2
11
bivalent sigma-2
8
sigma-2 receptor/tmem97
8
cytotoxic activity
8
metabolically stimulative
8
high affinity
8
mam03055a
7
receptor
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!