The small heat shock protein (sHsp) called HspB8 (formerly, Hsp22) is one of the least typical sHsp members, whose oligomerization status remains debatable. Here we analyze the effect of mutations in a highly conservative sequence located in the N-terminal domain of human HspB8 on its physico-chemical properties and chaperone-like activity. According to size-exclusion chromatography coupled to multi-angle light scattering, the wild type (WT) HspB8 is present as dominating monomeric species (~24 kDa) and a small fraction of oligomers (~60 kDa). The R29A amino acid substitution leads to the predominant formation of 60-kDa oligomers, leaving only a small fraction of monomers. Deletion of the 28-32 pentapeptide (Δ mutant) results in the formation of minor quantities of dimers (~49 kDa) and large quantities of the 24-kDa monomers. Both the WT protein and its Δ mutant efficiently bind a hydrophobic probe bis-ANS and are relatively rapidly hydrolyzed by chymotrypsin, whereas the R29A mutant weakly binds bis-ANS and resists chymotrypsinolysis. In contrast to HspB8 WT and its Δ mutant, which are well phosphorylated by cAMP-dependent and ERK1 protein kinases, the R29A mutant is poorly phosphorylated. R29A mutation affects the chaperone-like activity of HspB8 measured in vitro. It is concluded that the irreplaceable Arg residue located in the only highly conservative motif in the N-terminal domain of all sHsp proteins affects the oligomeric structure and key properties of HspB8.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8213154 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0253432 | PLOS |
Nucleic Acids Res
January 2025
Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
Serum response factor (SRF) is a master transcription factor that regulates immediate early genes and cytoskeletal remodeling genes. Despite its importance, the mechanisms through which SRF stably associates with its cognate promoter remain unknown. Our biochemical and protein-induced fluorescence enhancement analyses showed that the binding of SRF to serum response element was significantly increased by inositol polyphosphate multikinase (IPMK), an SRF cofactor.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo, 204-8588, Japan. Electronic address:
WD repeat domain 74 (WDR74) is a nucleolar protein involved in the early stages of pre-60S maturation in the ribosome biogenesis pathway. In later stages, WDR74 interacts with MTR4, an RNA helicase that functions with the exosome nuclease complex, and is dissociated upon ATP hydrolysis by the chaperone-like nuclear VCP-like 2 (NVL2) AAA-ATPase. We previously reported that ATP hydrolysis-defective NVL2 causes aberrant accumulation of WDR74 on the MTR4-exosome complex at the nucleolar periphery and in the nucleoplasm and that this nuclear redistribution of WDR74 leads to the unusual cleavage of the early rRNA precursor within the internal transcribed spacer 1 sequence.
View Article and Find Full Text PDFJ Mol Biol
December 2024
IGMM, CNRS, Univ Montpellier, Montpellier, France; Equipe labellisée Ligue Nationale Contre le Cancer, Montpellier, France; IGH, CNRS, Univ Montpellier, Montpellier, France. Electronic address:
The R2TP chaperone is composed of the RUVBL1/RUVBL2 AAA+ ATPases and two adapter proteins, RPAP3 and PIH1D1. Together with HSP90, it functions in the assembly of macromolecular complexes that are often involved in cell proliferation. Here, proteomic experiments using the isolated PIH domain reveals additional R2TP partners, including the Tuberous Sclerosis Complex (TSC) and many transcriptional complexes.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, USA; Howard Hughes Medical Institute, Chevy Chase, Maryland, USA. Electronic address:
Maintaining the dynamic structure of chromatin is critical for regulating the cellular processes that require access to the DNA template, such as DNA damage repair, transcription, and replication. Histone chaperones and ATP-dependent chromatin remodeling factors facilitate transitions in chromatin structure by assembling and positioning nucleosomes through a variety of enzymatic activities. SMARCAD1 is a unique chromatin remodeler that combines the ATP-dependent ability to exchange histones, with the chaperone-like activity of nucleosome deposition.
View Article and Find Full Text PDFLife (Basel)
September 2024
Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!