A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Proximity-Induced Hybridization Chain Reaction-Based Photoacoustic Imaging System for Amplified Visualization Protein-Specific Glycosylation in Mice. | LitMetric

Proximity-Induced Hybridization Chain Reaction-Based Photoacoustic Imaging System for Amplified Visualization Protein-Specific Glycosylation in Mice.

Anal Chem

College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China.

Published: June 2021

Glycosylation is a key cellular mechanism that regulates several physiological and pathological functions. Therefore, identification and characterization of specific-protein glycosylation in vivo are highly desirable for studying glycosylation-related pathology and developing personalized theranostic modalities. Herein, we demonstrated a photoacoustic (PA) nanoprobe based on the proximity-induced hybridization chain reaction (HCR) for amplified visual detection of protein-specific glycosylation in vivo. Two kinds of functional DNA probes were designed. A glycan probe (DBCO-GP) was attached to glycans through metabolic oligosaccharide engineering (MOE) and protein probe (PP)-targeted proteins by aptamer recognition. Proximity-induced hybridization of the complementary domain between the two kinds of probes promoted conformational changes in the protein probes and in situ release of the HCR initiator domain. Gold nanoparticles (AuNPs) modified by complementary sequences (Au-H1 and Au-H2) self-assembled into Au aggregates via the HCR, thereby converting DNA signals to photoacoustic signals. Due to the high contrast and deep penetration of photoacoustic imaging, this strategy enabled in situ detection of Mucin 1 (MUC1)-specific glycosylation in mice with breast cancer and successfully monitored its dynamic states during tunicamycin treatment. This imaging technique provides a powerful platform for studying the effects of glycosylation on the protein structure and function, which helps to elucidate its role in disease processes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.1c01352DOI Listing

Publication Analysis

Top Keywords

proximity-induced hybridization
12
hybridization chain
8
photoacoustic imaging
8
protein-specific glycosylation
8
glycosylation mice
8
glycosylation vivo
8
glycosylation
6
chain reaction-based
4
photoacoustic
4
reaction-based photoacoustic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!