IGZO/CsPbBr-Nanoparticles/IGZO Neuromorphic Phototransistors and Their Optoelectronic Coupling Applications.

ACS Appl Mater Interfaces

Laboratory of Advanced Nano Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.

Published: June 2021

Optoelectronic synaptic devices are of great scientific and practical importance because of various potential applications such as ocular simulating and optical-electrical managers based on a new optoelectronic coupling mechanism. In this work, we design a novel channel layer with p-type CsPbBr nanoparticles (NPs) buried in an InGaZnO (IGZO) film to construct the corresponding thin-film transistors (TFTs), which exhibits intense improvement in visible-light photosensitivity and synaptic plasticity as compared to the pure IGZO counterpart. Specifically, the composite device is able to exhibit versatile synaptic behavior under light stimuli with density as low as 0.12 μW/cm and with the gain 5-20 times higher than that of the IGZO TFT in the visible-light region. Based on the band alignment between the IGZO and NPs, the excitation and decay processes of intrinsic and photoinduced carriers are discussed. Moreover, owing to the gate bias control in a three-terminal configuration, our TFT synapses can imitate complex biological behaviors including the famous "Pavlov's dog" experiment and the "reward and punishment mechanism" of the brain via editing the gate voltage/light pulse stimuli.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c05396DOI Listing

Publication Analysis

Top Keywords

optoelectronic coupling
8
igzo/cspbbr-nanoparticles/igzo neuromorphic
4
neuromorphic phototransistors
4
phototransistors optoelectronic
4
coupling applications
4
applications optoelectronic
4
optoelectronic synaptic
4
synaptic devices
4
devices great
4
great scientific
4

Similar Publications

The degradation of methylene blue dye-contaminated wastewater via photocatalysis is an efficient approach towards environmental remediation. The SrZrO perovskite photocatalyst was synthesized using the modified Pechini sol-gel method, and characterized using XRD, FESEM, FTIR, and UV-visible spectrophotometer. Crystallite size obtained by the Scherrer and Williamson-Hall methods were 45.

View Article and Find Full Text PDF

Enzyme cascade nanozyme based colorimetric sensor for detection of uric acid as a biomarker of hyperuricemia.

Mikrochim Acta

January 2025

Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China.

A Cr-doped VO nanobelt (Cr/VO) with remarkable peroxidase-like activity was synthesized and coupled with uricase to catalyze the cascade reaction for  detection of uric acid. Notably, the affinity of Cr/VO for 3,3',5,5'-tetramethylbenzidine dihydrochloride hydrate (TMB) and hydrogen peroxide (HO) is tenfold and 20-fold higher, respectively, than that of horseradish peroxidase (HRP). The Cr/VO exhibits highly reactive and stable peroxidase activity at temperatures of 20-60 ℃.

View Article and Find Full Text PDF

Engineering Active Interfaces on the Surface of Porous Single-Crystalline TiO Monoliths for Enhanced Catalytic Activity and Stability.

Research (Wash D C)

January 2025

Key Laboratory of Design & Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.

The engineering design and construction of active interfaces represents a promising approach amidst numerous initiatives aimed at augmenting catalytic activity. Herein, we present a novel approach to incorporate interconnected pores within bulk single crystals for the synthesis of macroscopic porous single-crystalline rutile titanium oxide (R-TiO). The porous single crystal (PSC) R-TiO couples a nanocrystalline framework as the solid phase with pores as the fluid phase within its structure, providing unique advantages in localized structure construction and in the field of catalysis.

View Article and Find Full Text PDF

Vibronic coupling and multiple electronic states effect play a pivotal role in the molecular spectroscopy of large systems. Herein, we present a detailed theoretical study on the absorption (ABS) and electronic circular dichroism (ECD) spectra of three [7]helicene derivatives in chloroform, with a particular emphasis on the significance of vibronic coupling and the multiple electronic states effect in spectral simulations. The vertical gradient (VG) and vertical Hessian (VH) models, incorporating the Franck-Condon (FC) effect and Herzberg-Teller (HT) contribution, are considered in the vibronic calculations.

View Article and Find Full Text PDF

Photoinduced Fröhlich Interaction-Driven Distinct Electron- and Hole-Polaron Behaviors in Hybrid Organic-Inorganic Perovskites by Ultrafast Terahertz Probes.

ACS Nano

January 2025

School of Information Science and Technology and Department of Optical Science and Engineering and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200433, China.

The formation of large polarons resulting from the Fröhlich coupling of photogenerated carriers with the polarized crystal lattice is considered crucial in shaping the outstanding optoelectronic properties in hybrid organic-inorganic perovskite crystals. Until now, the initial polaron dynamics after photoexcitation have remained elusive in the hybrid perovskite system. Here, based on the terahertz time-domain spectroscopy and optical-pump terahertz probe, we access the nature of interplay between photoexcited unbound charge carriers and optical phonons in MAPbBr within the initial 5 ps after excitation and have demonstrated the simultaneous existence of both electron- and hole-polarons, together with the photogenerated carrier dynamic process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!