In this study, a simple Benzimidazole based bifunctional chemosensor 4-(2-(3,4-dimethoxyphenyl)-1H-benzo[d]imidazol-6-yl) benzene-1,2-diamine, L was synthesized and characterized. The sensor proved to be selective and sensitive towards detecting banned azo dyes Sudan Dye I, II, and Metanil Yellow via fluorescence turn-off response. The proposed mechanism of fluorescence quenching was the inner filter effect. LODs for Sudan I, II, and Metanil Yellow were found to be 0.009 µM, 0.012 µM, and 0.0073 µM, respectively. The developed chemosensor also showed a colorimetric response towards Cu (II) ions via an apparent color change from yellow to pink. LOD for Cu (II) ions was found to be 1.2 µM. The synthesized benzimidazole based bifunctional chemosensor was adequately tested to determine Sudan I in Red chili powder and red Food color samples, Metanil yellow in turmeric powder, and Cu(II) packaged coconut water.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10895-021-02766-5DOI Listing

Publication Analysis

Top Keywords

benzimidazole based
12
based bifunctional
12
metanil yellow
12
selective sensitive
8
azo dyes
8
red food
8
food color
8
turmeric powder
8
powder cuii
8
coconut water
8

Similar Publications

Natural deep eutectic solvent-based liquid phase microextraction in a 3D-Printed millifluidic flow cell for the on-line determination of thiabendazole in juice samples.

Anal Chim Acta

February 2025

Departamento de Medio Ambiente y Agronomía, INIA-CSIC, Carretera de A Coruña km. 7.5, 28040, Madrid, Spain. Electronic address:

Background: At present, 3D printing technology is becoming increasingly popular in analytical chemistry because it enables the rapid and cost-effective manufacture of sample preparation devices, particularly in flow-based operation, opening up new opportunities for the development of automated analytical methods. In parallel, the use of miniaturized methods and sustainable solvents in sample preparation is highly recommended. Accordingly, in this work, a 3D-printed millifluidic device was designed and used for the on-line natural deep eutectic solvent (NADES)-based liquid phase microextraction (LPME) coupled to a spectrofluorometer for, as a proof of concept, the determination of thiabendazole (TBZ) in fruit juice samples.

View Article and Find Full Text PDF

Anions play a crucial role in various environmental, chemical, and biological processes. Among various anions, the production of perchlorate (ClO ) ion is expected to rise in upcoming years, and thus, an efficient method for the detection of perchlorate ion is highly desirable. In this effort, a pyridyl-benzimidazole-based luminescent probe (RSB1) containing two N-H donor sites has been synthesized for selective detection of perchlorate ion.

View Article and Find Full Text PDF

This article presents a new and facile method for the synthesis of Schiff base compounds with a benzimidazole group using a low-cost and reusable calcium aluminate nanophosphorus catalyst (CaAlO). This approach avoids harmful solvents and reactants, supporting a more environmentally friendly synthesis process. The catalyst maintained its activity and heterogeneity over four cycles with minimal loss of efficiency.

View Article and Find Full Text PDF

This article provides a basic summary of computational research on benzimidazole and its molecular targets in breast cancer (BC) drug discovery. The drug development process is streamlined, expenses are decreased, and the possibility of finding successful therapies for this difficult illness is increased with the use of computational tools. The utilization of benzimidazole derivatives in medication research and discovery is discussed, along with the results of benzimidazole derivative-related clinical trials conducted against blood cancer during the previous five years.

View Article and Find Full Text PDF

In this work, we have explored the metal ion sensing properties of two bisbenzimidazole-based fluorescent probes, that differ in their conformational flexibility, in an aqueous medium. The compound with a flexible methyl spacer (1) experienced blue shifts in its absorption and emission maxima (along with a turn-off response) upon the addition of Hg ions. On the contrary, the compound with a relatively rigid structure (2) showed red shifts in both its absorption and emission maxima (along with a turn-off response) when treated with Hg under similar conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!