Lithium-sulfur batteries (LSBs) have a high theoretical energy density and are low cost. However, the undesirable shuttle effect with the solid discharge product, Li2S, greatly impedes their market penetration. Conductive carbon materials with functional elements are beneficial in controlling the shuttle effect and can reactivate the Li2S, leading to improved long term cycling performance of LSBs. Herein, we report zinc (Zn) and nitrogen (N) co-doped ZIF-8 derived hollow carbon (ZHC) as a promising separator coating for LSBs to control the shuttle effect. The hollow area in the ZHC is identified to be around 250 nm with a carbonized outer surface thickness of approximately 50 nm. The presence of Zn and N in the nanohollow carbon structure helps to mitigate polysulfide (PS) diffusion in LSBs. Furthermore, the hollow interior of the carbon acts as a PS pocket to physically capture the PS and in addition Zn and N chemically attract the PS through polar-polar and metal sulfide interactions. The ZHC with its unique architecture and functional groups shows a promising performance with an initial specific capacity (S.cap) of 842 mA h g-1 at 4.80 mg cm-2 and cycling stability until 400 cycles, which is considerably higher in comparison with the cycling performance of parent ZIF-8.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1nr01674aDOI Listing

Publication Analysis

Top Keywords

zif-8 derived
8
derived hollow
8
hollow carbon
8
lithium-sulfur batteries
8
cycling performance
8
carbon
5
hollow
4
carbon trap
4
trap polysulfides
4
polysulfides high
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!