Femtosecond laser electronic excitation tagging (FLEET) velocimetry was used in the boundary layer of an ogive-cylinder model in a Mach-6 Ludwieg tube. One-dimensional velocity profiles were extracted from the FLEET signal in laminar boundary layers from pure flows at unit Reynolds numbers ranging from 3.4×10/ to3.9×10/. The effects of model tip bluntness and the unit Reynolds number on the velocity profiles were investigated. The challenges and strategies of applying FLEET for direct boundary layer velocity measurement are discussed. The potential of utilizing FLEET velocimetry for understanding the dynamics of laminar and turbulent boundary layers in hypersonic flows is demonstrated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.417470 | DOI Listing |
ACS Nano
January 2025
Institute for Energy Electrochemistry and Urban Mines Metallurgy, School of Metallurgy, Northeastern University, Shenyang, Liaoning 110819, China.
Manganese-based layer-structured transition metal oxides are considered promising cathode materials for future sodium batteries owing to their high energy density potential and industrial feasibility. The grain-related anisotropy and electrode/electrolyte side reactions, however, constrain their energy density and cycling lifespan, particularly at high voltages. Large-sized single-crystal O3-typed Na[NiMnCuTi]O was thus designed and successfully synthesized toward high-voltage and long-lifespan sodium batteries.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
Environmental Studies Center (CEA), São Paulo State University (UNESP), Avenida 24-A, 1515, Rio Claro, SP, 13506-900, Brazil.
Background: The Diffusive Gradients in Thin Films (DGT) technique has become the most widely used passive sampling method for inorganic compounds. This widespread adoption can be partly attributed to the development of new binding phases that facilitate the sampling of numerous analytes. In contrast, to date, the DGT sampler for inorganic compounds has not seen any significant design improvements.
View Article and Find Full Text PDFElectromagn Biol Med
January 2025
Department of Applied Mathematics, University of Calcutta, Kolkata, India.
The current investigation explores tri-hybrid mediated blood flow through a ciliary annular model, designed to emulate an endoscopic environment. The human circulatory system, driven by the metachronal ciliary waves, is examined in this study to understand how ternary nanoparticles influence wave-like flow dynamics in the presence of interfacial nanolayers. We also analyze the effect of an induced magnetic field on Ag-Cu-/blood flow within the annulus, focusing on thermal radiation, heat sources, buoyancy forces and ciliary motion.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Division of Physics & Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
With remarkable stability and exceptional optoelectronic properties, two-dimensional (2D) halide layered perovskites hold immense promise for revolutionizing photovoltaic technology. Effective data representations are key to the success of all learning models. Currently, the lack of comprehensive and accurate material representations has hindered AI-based design and discovery of 2D perovskites, limiting their potential for advanced photovoltaic applications.
View Article and Find Full Text PDFJ Acoust Soc Am
January 2025
National Key Laboratory of Underwater Acoustic Technology, Harbin Engineering University, Harbin 150001, China.
The dispersion of circumferential waves propagating around cylindrical and spherical underwater targets with an arbitrary number of elastic and fluid layers is modeled using the spectral collocation method. The underlying differential equations are discretized by Chebyshev interpolation and the corresponding differentiation matrices, and the calculation of the dispersion curves is transformed into a generalized eigenvalue problem. Furthermore, for targets in infinite fluid, the perfect matched layer is used to emulate the Sommerfeld radiation condition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!