Speckle can be attenuated by averaging the reconstructed images of each sub-hologram or being filtered with different filters, at the expense of resolution. We propose a de-speckling method for a single-shot digital hologram while maintaining the resolution. Different tip-tilt phases are demonstrated to cause changes only for the speckle distributions of the reconstructed image. The speckle is attenuated by averaging these intensity images with different speckle distributions. The normalized contrast can be reduced to 0.56 by averaging only 20 different reconstructed images. When the averaged image is processed with block matching and 3D filtering, a further de-speckled image at a normalized contrast of 0.46 can be obtained with highly preserved resolution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.426329 | DOI Listing |
Diabetes
January 2025
Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China.
Diabetic microvascular dysfunction is evidenced by disrupted endothelial cell junctions and increased microvascular permeability. However, effective strategies against these injuries remain scarce. In this study, the type 2 diabetes mouse model was established by high-fat diet combined with streptozotocin injection in Rnd3 endothelial- specific transgenic and knockout mice.
View Article and Find Full Text PDFPhytomedicine
January 2025
Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; Key Laboratory of Rehabilitation, Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou 325024, Zhejiang, China. Electronic address:
Background: Neonatal hypoxic-ischemic encephalopathy (HIE) has a high incidence and mortality rate, representing a significant patient burden. Therefore, treatment strategies that work synergistically with hypothermic therapies are urgently required. Punicalagin (PUN) is a natural and safe polyphenol with anti-inflammatory functions whose excellent water solubility and safety make it an advantageous perinatal medication.
View Article and Find Full Text PDFTheranostics
January 2025
Department of neurology, Dongguk University Ilsan Hospital, Goyang 10326, Republic of Korea.
It remains unclear why unilateral proximal carotid artery occlusion (UCAO) causes benign oligemia in mice, yet leads to various outcomes (asymptomatic-to-death) in humans. We hypothesized that inhibition of nitric oxide synthase (NOS) both transforms UCAO-mediated oligemia into full infarction and expands pre-existing infarction. Using 900 mice, we i) investigated stroke-related effects of UCAO with/without intraperitoneal administration of the NOS inhibitor (NOSi) N-nitro-L-arginine methyl ester (L-NAME, 400 mg/kg); ii) examined the rescue effect of the NO-donor, molsidomine (200 mg/kg at 30 minutes); and iii) tested the impact of antiplatelet medications.
View Article and Find Full Text PDFEur J Radiol
November 2024
Department of Radiology, First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, China. Electronic address:
Purpose: To retrospectively analyze the CT and MR imaging presentations of adrenal hemangioma (AH) and to strengthen the recognition for such tumors.
Materials And Methods: This retrospective study enrolled 21 patients with 22 lesions histologically proven AH from two centers between October 2010 and November 2023. The clinical presentation and preoperative diagnosis were recorded.
Speckle-based X-ray imaging (SBI) is a phase-contrast method developed at and for highly coherent X-ray sources, such as synchrotrons, to increase the contrast of weakly absorbing objects. Consequently, it complements the conventional attenuation-based X-ray imaging. Meanwhile, attempts to establish SBI at less coherent laboratory sources have been performed, ranging from liquid metal-jet X-ray sources to microfocus X-ray tubes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!