Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Investigating real-time phenomena in bio-polymers has received much attention because of their increasing demands in polymer substitution. The 3D morphometry of polymer surfaces may be very impactful in such studies. Here, digital holographic microscopy (DHM) is applied for quantitative measurement of the rare morphological changes of UV-A and UV-C exposed nanocomposites during their incubation with excess water. By reconstructing the recorded successive digital holograms, the time evolution of the swelled regions of the samples is derived. Our results clearly show that the higher water swelling of UV-A irradiated starch/kefiran/ZnO may be attributed to its higher hydrophilicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.423075 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!