Objectives: Intraprocedural deployment of endovascular devices during complex aortic repair with 2-dimensional (2D) x-ray fluoroscopic guidance poses challenges in terms of accurate delivery system positioning and increased risk of x-ray radiation exposure with prolonged fluoroscopy times, particularly in unfavorable anatomy. The objective of this study was to assess feasibility of using an augmented reality (AR) system to position and orient a modified aortic endograft delivery system in comparison with standard fluoroscopy.
Materials And Methods: The 3-dimensional guidance, navigation, and control (3D-GNC) prototype system was developed for eventual integration with the Intra-Operative Positioning System (IOPS, Centerline Biomedical, Cleveland, OH) to project spatially registered 3D holographic representations of the subject-specific aorta for intraoperative guidance and coupled with an electromagnetically (EM) tracked delivery system for intravascular navigation. Numerical feedback for controlling the endograft landing zone distance and ostial alignment was holographically projected on the operative field. Visualization of the holograms was provided via a commercially available AR headset. A Zenith Spiral-Z AAA limb stent-graft was modified with a scallop, 6 degree-of-freedom EM sensor for tracking, and radiopaque markers for fluoroscopic visualization. In vivo, 10 interventionalists independently positioned and oriented the delivery system to the ostia of renal or visceral branch vessels in anesthetized swine via open femoral artery access using 3D-GNC and standard fluoroscopic guidance. Procedure time, fluoroscopy time, cumulative air kerma, and contrast material volume were recorded for each technique. Positioning and orientation accuracy was determined by measuring the target landing-zone distance error (δ) and the scallop-ostium angular alignment error (θ) using contrast-enhanced cone beam computed tomography imaging after each positioning for each technique. Mean, standard deviation, and standard error are reported for the performance variables, and Student's tests were used to evaluate statistically significant differences in performance mean values of 3D-GNC and fluoroscopy.
Results: Technical success for the use of 3D-GNC to orient and position the endovascular device at each renal-visceral branch ostium was 100%. 3D-GNC resulted in 56% decrease in procedure time in comparison with standard fluoroscopic guidance (p<0.001). The 3D-GNC system was used without fluoroscopy or contrast-dye administration. Positioning accuracy was comparable for both techniques (p=0.86), while overall orientation accuracy was improved with the 3D-GNC system by 41.5% (p=0.008).
Conclusions: The holographic 3D-GNC system demonstrated improved accuracy of aortic stent-graft positioning with significant reductions in fluoroscopy time, contrast-dye administration, and procedure time.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8922995 | PMC |
http://dx.doi.org/10.1177/15266028211025026 | DOI Listing |
Curr Med Chem
January 2025
Department of Pharmaceutical Biotechnology, Anadolu University, Eskişehir, Turkey.
Introduction: The effectiveness of pharmaceutical treatment methods is vital in cancer treatment. In this context, various targeted drug delivery systems are being developed to minimize or eliminate existing deficiencies and harms. This study aimed to model the interaction of MEN-based drug-targeting systems with cancer cells and determine the properties of interacting MENs.
View Article and Find Full Text PDFCurr Med Chem
January 2025
Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, 384012, India.
Aims: This study aimed to develop Imatinib Mesylate (IMT)-loaded Poly Lactic-co-Glycolic Acid (PLGA)-D-α-tocopheryl polyethylene glycol succinate (TPGS)- Polyethylene glycol (PEG) hybrid nanoparticles (CSLHNPs) with optimized physicochemical properties for targeted delivery to glioblastoma multiforme.
Background: Glioblastoma multiforme (GBM) is the most destructive type of brain tumor with several complications. Currently, most treatments for drug delivery for this disease face challenges due to the poor blood-brain barrier (BBB) and lack of site-specific delivery.
Indian J Med Ethics
January 2025
Professor & Head, Dept of Pediatrics, All India Institute of Medical Sciences, Mangalagiri, Andhra Pradesh, INDIA.
The article analyses the recent amendment by the National Medical Commission (NMC) in India, capping the number of undergraduate medical seats in high-performing states, which has sparked a debate. With a healthcare system catering to the diverse needs of 1.4 billion people, regional disparities in healthcare personnel distribution have emerged, especially among doctors.
View Article and Find Full Text PDFWorld J Diabetes
January 2025
State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511436, Guangdong Province, China.
Ma recently reported in the that ferroptosis occurs in osteoblasts under high glucose conditions, reflecting diabetes pathology. This condition could be protected by the upregulation of the gene encoding polycytosine RNA-binding protein 1 (PCBP1). Additionally, Ma used a lentivirus infection system to express PCBP1.
View Article and Find Full Text PDFMol Ther Nucleic Acids
March 2025
Program of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia.
Currently, no approved antiviral drugs target dengue virus (DENV) infection, leaving treatment reliant on supportive care. DENV vaccine efficacy varies depending on the vaccine type, the circulating serotype, and vaccine coverage. We investigated defective interfering particles (DIPs) and lipid nanoparticles (LNPs) to deliver DI290, an anti-DENV DI RNA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!