A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Whole-body vibration preconditioning reduces the formation and delays the manifestation of high-altitude-induced venous gas emboli. | LitMetric

New Findings: What is the central question of this study? Is performing a 30-min whole-body vibration (WBV) prior to a continuous 90-min exposure at 24,000 ft sufficient to prevent venous gas emboli (VGE) formation? What is the main finding and its importance? WBV preconditioning significantly reduces the formation and delays the manifestation of high-altitude-induced VGE. This study suggests that WBV is an effective strategy in lowering decompression stress.

Abstract: Rapid decompression may give rise to formation of venous gas emboli (VGE) and resultantly, increase the risk of sustaining decompression sickness. Preconditioning aims at lowering the prevalence of VGE during decompression. The purpose of this study was to investigate the efficacy of whole-body vibration (WBV) preconditioning on high-altitude-induced VGE. Eight male subjects performed, on separate days in a randomised order, three preconditioning strategies: 40-min seated-rest (control), 30-min seated-rest followed by 150 knee-squats performed over a 10-min period (exercise) and 30-min WBV proceeded by a 10-min seated-rest. Thereafter, subjects were exposed to an altitude of 24,000 ft (7315 m) for 90 min whilst laying in a supine position and breathing 100% oxygen. VGE were assessed ultrasonically both during supine rest (5-min intervals) and after three fast, unloaded knee-bends (15-min intervals) and were scored using a 5-grade scale and evaluated using the Kisman Integrated Severity Score (KISS). There was a significant difference in VGE grade (P < 0.001), time to VGE manifestation (P = 0.014) and KISS score following knee-bends (P = 0.002) across protocols, with a trend in KISS score during supine rest (P = 0.070). WBV resulted in lower VGE grades (median (range), 1 (0-3)) and KISS score (2.69 ± 4.56 a.u.) compared with control (2 (1-3), P = 0.002; 12.86 ± 8.40 a.u., P = 0.011) and exercise (3 (2-4) , P < 0.001; 22.04 ± 13.45 a.u., P = 0.002). VGE were detected earlier during control (15 ± 14 min, P = 0.024) and exercise (17 ± 24 min, P = 0.032) than WBV (54 ± 38 min). Performing a 30-min WBV prior to a 90-min continuous exposure at 24,000 ft both delays the manifestation and reduces the formation of VGE compared with control and exercise preconditioning.

Download full-text PDF

Source
http://dx.doi.org/10.1113/EP089522DOI Listing

Publication Analysis

Top Keywords

whole-body vibration
12
venous gas
12
gas emboli
12
preconditioning reduces
8
reduces formation
8
formation delays
8
delays manifestation
8
manifestation high-altitude-induced
8
vibration wbv
8
emboli vge
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!