The inherent in vivo instability of oligonucleotides presents one of many challenges in the development of RNAi-based therapeutics. Chemical modification to the 5'-terminus serves as an existing paradigm which can make phosphorylated antisense strands less prone to degradation by endogenous enzymes. It has been recently shown that installation of 5'-cyclopropyl phosphonate on the terminus of an oligonucleotide results in greater knockdown of a targeted protein when compared to its unmodified phosphate derivative. In this paper we report the synthesis of a 5'-modified uridine.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1cc02328dDOI Listing

Publication Analysis

Top Keywords

synthesis novel
4
novel cyclopropyl
4
cyclopropyl phosphonate
4
phosphonate nucleotide
4
nucleotide phosphate
4
phosphate mimic
4
mimic inherent
4
inherent vivo
4
vivo instability
4
instability oligonucleotides
4

Similar Publications

Sebaceous free fatty acids are metabolized by multiple skin microbes into bioactive lipid mediators termed oxylipins. This study investigated correlations between skin oxylipins and microbes on the superficial skin of pre-pubescent children (N = 36) and adults (N = 100), including pre- (N = 25) and post-menopausal females (N = 25). Lipidomics and metagenomics revealed that Malassezia restricta positively correlated with the oxylipin 9,10-DiHOME on adult skin and negatively correlated with its precursor, 9,10-EpOME, on pre-pubescent skin.

View Article and Find Full Text PDF

Novel technique to produce porous thermochromic VO nanoparticle films using gas aggregation source.

Sci Rep

January 2025

Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00, Prague 8, Czech Republic.

Vanadium dioxide (VO) is a phase transition material that undergoes semiconductor-to-metal transition at the temperature of about 68 °C. This extraordinary feature triggered intensive research focused on the controlled synthesis of VO. In this study, we introduce and investigate an original linker- and solvent-free strategy enabling the production of highly porous VO nanoparticle-based films.

View Article and Find Full Text PDF

Autosomal dominant CDK13-related disease is characterized by congenital heart defects, dysmorphic facial features, and intellectual developmental disorder (CHDFIDD). Heterozygous pathogenic variants, particularly missense variants in the kinase domain, have previously been described as disease causing. Using the determination of a methylation pattern and comparison with an established episignature, we reveal the first hypomorphic variant in the kinase domain of CDK13, leading to a never before described autosomal recessive form of CHDFIDD in a boy with characteristic features.

View Article and Find Full Text PDF

The interconnective role of the UPS and autophagy in the quality control of cancer mitochondria.

Cell Mol Life Sci

January 2025

State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.

Uncontrollable cancer cell growth is characterized by the maintenance of cellular homeostasis through the continuous accumulation of misfolded proteins and damaged organelles. This review delineates the roles of two complementary and synergistic degradation systems, the ubiquitin-proteasome system (UPS) and the autophagy-lysosome system, in the degradation of misfolded proteins and damaged organelles for intracellular recycling. We emphasize the interconnected decision-making processes of degradation systems in maintaining cellular homeostasis, such as the biophysical state of substrates, receptor oligomerization potentials (e.

View Article and Find Full Text PDF

Cyclin-dependent protein kinases and cell cycle regulation in biology and disease.

Signal Transduct Target Ther

January 2025

Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy.

Cyclin Dependent Kinases (CDKs) are closely connected to the regulation of cell cycle progression, having been first identified as the kinases able to drive cell division. In reality, the human genome contains 20 different CDKs, which can be divided in at least three different sub-family with different functions, mechanisms of regulation, expression patterns and subcellular localization. Most of these kinases play fundamental roles the normal physiology of eucaryotic cells; therefore, their deregulation is associated with the onset and/or progression of multiple human disease including but not limited to neoplastic and neurodegenerative conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!