We report experimental results on damage induced by ionizing radiation to DNA origami triangles which are commonly used prototypes for scaffolded DNA origami nanostructures. We demonstrate extreme stability of DNA origami upon irradiation, which is caused by (i) the multi-row design holding the shape of the origami even after severe damage to the scaffold DNA and (ii) the reduction of damage to the scaffold DNA due to the protective effect of the folded structure. With respect to damage induced by ionizing radiation, the protective effect of the structure is superior to that of a naturally paired DNA double helix. Present results allow estimating the stability of scaffolded DNA origami nanostructures in applications such as nanotechnology, pharmacy or in singulo molecular studies where they are exposed to ionizing radiation from natural and artificial sources. Additionally, possibilities are opened for scaffolded DNA use in the design of radiation-resistant and radio-sensitive materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8247635 | PMC |
http://dx.doi.org/10.1039/d1nr02013g | DOI Listing |
ACS Nano
December 2024
Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
Angew Chem Int Ed Engl
December 2024
Nanjing University, Department of Biomedical Engineering, CHINA.
Biological systems utilize precise spatial organization to facilitate and regulate information transmission within signaling networks. Inspired by this, artificial scaffolds that enable delicate spatial arrangements are desirable to increase the local concentration of reactants, expedite specific interactions, and minimize undesired interference. In this study, we presented an integrated biosensing nanodevice, termed TRI-HCR, in which hybridization chain reaction (HCR) probes were precisely organized on a triangular DNA origami nanostructure (TRI) with finely-tuned distance, quantity, and pattern.
View Article and Find Full Text PDFAnal Methods
December 2024
Troy High School, 2200 Dorothy Ln, Fullerton, CA 92831, USA.
This paper explores how DNA nanotechnology enhances biosensors in medicine and pharmacology by taking advantage of the unique characteristics of DNA and the unique advantages of DNA origami technology. DNA origami allows the establishment of complex nanoobjects with precise size and complete molecular writability as well as the possibility of seamless integration and biocompatibility with biological systems. Utilizing this, the chemical denaturation of DNA chains allows for the combination of various functions, including organic fluorescence groups and photoreaction elements, This has allowed DNA origami to become a transformative tool in biotechnology and other fields because of its versatility, use in innovative applications improving the design and function of biosensors, and potential to provide greater possibilities for early disease diagnosis and personalized medicine.
View Article and Find Full Text PDFSmall
December 2024
Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
Raman spectroscopy (RS) has emerged as a novel optical imaging modality by identifying molecular species through their bond vibrations, offering high specificity and sensitivity in molecule detection. However, its application in intracellular molecular probing has been limited due to challenges in combining vibrational tags with functional probes. DNA nanostructures, known for their high programmability, have been instrumental in fields like biomedicine and nanofabrication.
View Article and Find Full Text PDFACS Nano
December 2024
Dipartimento di Fisica, Sapienza Università di Roma, P. le Aldo Moro 5, 00185 Rome, Italy.
One of the frontiers of nanotechnology is advancing beyond the periodic self-assembly of materials. Icosahedral quasicrystals, aperiodic in all directions, represent one of the most challenging targets that has yet to be experimentally realized at the colloidal scale. Previous attempts have required meticulous human-designed building blocks and often resulted in interactions beyond the current experimental capabilities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!