Precision farming has the potential to increase global food production capacity whilst minimizing traditional inputs. However, the adoption and impact of precision farming are contingent on the availability of sensors that can discern the state of crops, while not interfering with their growth. Electrical impedance spectroscopy offers an avenue for nondestructive monitoring of crops. To that end, it is reported on the deployment of impedimetric sensors utilizing microneedles (MNs) that can be used to pierce the waxy exterior of plants to obtain sensitive impedance spectra in open-air settings with an average relative noise value of 3.83%. The sensors are fabricated using a novel micromolding and release method that is compatible with UV photocurable and thermosetting polymers. Assessments of the quality of the MNs under scanning electron microscopy show that the replication process is high in fidelity to the original design of the master mold and that it can be used for upward of 20 replication cycles. The sensor's performance is validated against conventional planar sensors for obtaining the impedance values of Arabidopsis thaliana. As a change is detected in impedance due to lighting and hydration, this raises the possibility for their widespread use in precision farming.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8373106PMC
http://dx.doi.org/10.1002/advs.202101261DOI Listing

Publication Analysis

Top Keywords

precision farming
16
robust long-term
4
long-term exceptionally
4
exceptionally sensitive
4
sensitive microneedle-based
4
microneedle-based bioimpedance
4
bioimpedance sensor
4
precision
4
sensor precision
4
farming
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!