During the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) pandemic, chlorine-containing disinfectants have been widely used in nucleic acid amplification testing laboratories. Whether the use of disinfectants affect the results of viral nucleic acid amplification is unknown. We examined the impact of different hypochlorous acid (HOCl) concentrations on the quantitative results of SARS-CoV-2 by real-time reverse-transcription polymerase chain reaction (RT-PCR). We also explored the mechanisms and models of action of chlorine-containing disinfectants that affected the detection of SARS-CoV-2. The results showed that different HOCl concentrations and different action times had an impact on the SARS-CoV-2 results. High concentrations of ambient HOCl have a greater impact than low concentrations, and this effect will increase with the extension of the action time and with the increase in ambient humidity. Compared with the enzymes or the extracted RNA required for RT-PCR, the impact of HOCl on the SARS-CoV-2 detection is more likely to be caused by damage to primers and probes in the PCR system. The false negative result still existed after changing the ambient disinfectant to ethanol but not peracetic acid. The use of HOCl in the environment will have an unpredictable impact on the nucleic acid test results of SARS-CoV-2. In order to reduce the possibility of false negative of SARS-CoV-2 nucleic acid test and prevent the spread of epidemic disease, environmental disinfectants should be used at the beginning and end of the experiment rather than during the experimental operation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8426966PMC
http://dx.doi.org/10.1002/elps.202000387DOI Listing

Publication Analysis

Top Keywords

nucleic acid
20
acid amplification
12
high concentrations
8
sars-cov-2
8
sars-cov-2 nucleic
8
amplification testing
8
chlorine-containing disinfectants
8
acid hocl
8
hocl concentrations
8
false negative
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!