Purpose: Burning mouth syndrome (BMS) is a chronic intraoral pain syndrome. Previous studies have attempted to determine the brain connectivity features in BMS using functional and structural magnetic resonance imaging. However, no study has investigated the structural connectivity using multi-shell, multi-tissue-constrained spherical deconvolution (MSMT-CSD), anatomically constrained tractography (ACT), and spherical deconvolution informed filtering of tractograms (SIFT). Therefore, this study aimed to assess the differences in brain structural connectivity of patients with BMS and healthy controls using probabilistic tractography with these methods, and graph analysis.
Methods: Fourteen patients with BMS and 11 age- and sex-matched healthy volunteers underwent 3-T magnetic resonance imaging. MSMT-CSD-based probabilistic structural connectivity was computed using the second-order integration over fiber orientation distributions algorithm based on nodes set in 84 anatomical cortical regions with ACT and SIFT. A t-test was performed for comparisons between the BMS and healthy control brain networks.
Results: The betweenness centrality was significantly higher in the left insula, right amygdala, and right lateral orbitofrontal cortex and significantly lower in the right inferotemporal cortex in the BMS group than that in healthy controls. However, no significant difference was found in the clustering coefficient, node degree, and small-worldness between the two groups.
Conclusion: Graph analysis of brain probabilistic structural connectivity, based on diffusion imaging using an MSMT-CSD model with ACT and SIFT, revealed alterations in the regions comprising the pain matrix and medial pain ascending pathway. These results highlight the emotional-affective profile of BMS, which is a type of chronic pain syndrome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00234-021-02732-9 | DOI Listing |
Commun Math Phys
December 2024
Institut des Hautes Études Scientifiques, Le Bois-Marie 35 rte de Chartres, 91440 Bures-sur-Yvette, France.
Some years ago, it was conjectured by the first author that the Chern-Simons perturbation theory of a 3-manifold at the trivial flat connection is a resurgent power series. We describe completely the resurgent structure of the above series (including the location of the singularities and their Stokes constants) in the case of a hyperbolic knot complement in terms of an extended square matrix (, )-series whose rows are indexed by the boundary parabolic -flat connections, including the trivial one. We use our extended matrix to describe the Stokes constants of the above series, to define explicitly their Borel transform and to identify it with state-integrals.
View Article and Find Full Text PDFFront Robot AI
December 2024
School of Electrical and Electronic Engineering, University of Sheffield, Sheffield, United Kingdom.
This paper proposes a solution to the challenging task of autonomously landing Unmanned Aerial Vehicles (UAVs). An onboard computer vision module integrates the vision system with the ground control communication and video server connection. The vision platform performs feature extraction using the Speeded Up Robust Features (SURF), followed by fast Structured Forests edge detection and then smoothing with a Kalman filter for accurate runway sidelines prediction.
View Article and Find Full Text PDFDigit Health
December 2024
School of Nursing, University of Northern British Columbia, Prince George, BC, Canada.
Background: During the COVID-19 pandemic, governments across the world implemented processes and policies to limit the spread of COVID-19, especially in long-term care (LTC) homes. This led to changes in technology use for persons living in LTC homes, their families and friends, as well as the paid workforce dedicated to caring for them.
Objective: The study describes the role of technology and its impact on the experiences of LTC staff working in northern and rural areas in Western Canada during COVID-19.
Introduction: Dynamic modulation of grip occurs mainly within the major structures of the brain stem, in parallel with cortical control. This basic, but fundamental level of the brain, is robust to ill-formed feedback and to be useful, it may not require all the perceptual information of feedback we are consciously aware. This makes it viable candidate for using peripheral nerve stimulation (PNS), a form of tactile feedback that conveys intensity and location information of touch well but does not currently reproduce other qualities of natural touch.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Neurology, Division of Cognitive Neurology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.
Introduction: Alzheimer's disease (AD) is characterized by the presence of two proteinopathies, amyloid and tau, which have a cascading effect on the functional and structural organization of the brain.
Methods: In this study, we used a supervised machine learning technique to build a model of functional connections that predicts cerebrospinal fluid (CSF) p-tau/Aβ (the PATH-fc model). Resting-state functional magnetic resonance imaging (fMRI) data from 289 older adults in the Alzheimer's Disease Neuroimaging Initiative (ADNI) were utilized for this model.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!