Di(2-ethylhexyl) phthalate (DEHP), as an endocrine disruptor, is often used as a plasticizer in various polyvinyl chloride plastic products and medical consumables. Epidemiological studies have shown that long-term large intake of DEHP may be a risk factor for liver dysfunction. Long-term exposure to DEHP is associated with liver disease and aggravates the progression of chronic liver injury. However, the effects of DEHP on hepatocellular carcinoma (HCC) are rarely studied. In this study, we sought to determine the effects of DEHP on HCC induced by carbon tetrachloride combined with diethylnitrosamine, and further study its molecular mechanism. It was found that DEHP exposure significantly promotes tumor immune escape and activates signaling pathways involved in related protein expression of tumor immune escape, including PD-L1, JAK2, and STAT3. In addition, the trends observed in the HepG2 cells assay are consistent with vivo conditions. In summary, DEHP may play a tumor-promoting role in HCC mice and IFN-γ stimulated HepG2 cells, which may be related to the JAK2/STAT3 signaling pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8201567 | PMC |
http://dx.doi.org/10.1093/toxres/tfab018 | DOI Listing |
Sci Total Environ
January 2025
College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China. Electronic address:
The increasing prevalence of cancer has been linked to various environmental factors associated with modern industrial and societal advancements. Di-(2-ethylhexyl) phthalate (DEHP), a commonly used plasticizer, is one such environmental contaminant with potential carcinogenic effects. While epidemiological studies have suggested a positive association between DEHP exposure and cancer risk, the specific role of DEHP in cancer initiation and progression requires further clarification.
View Article and Find Full Text PDFProbiotics Antimicrob Proteins
January 2025
State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China.
Microplastics (MPs) and Di-(2-ethylhexyl) phthalate (DEHP) as emerging contaminants, have caused increasing concern due to their co-exposure risks and toxicities to humans. Lactic acid bacteria have been demonstrated to play a significant role in the mitigation of organismal damage. Probiotic intervention is widely recognized as a safe and healthy therapeutic strategy for targeting the mitigation of organic damage.
View Article and Find Full Text PDFAquat Toxicol
December 2024
School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., Zhenjiang, Jiangsu 212013, China. Electronic address:
Monoethylhexyl phthalate (MEHP) is the primary metabolite of di(2-ethylhexyl) phthalate (DEHP), the most prevalent phthalate plasticiser globally. It has been demonstrated that MEHP exerts more potent toxic effects than DEHP. Nevertheless, the full extent of the toxicity of MEHP to neurodevelopmental organisms remains unclear.
View Article and Find Full Text PDFEnviron Pollut
December 2024
Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China. Electronic address:
Di-(2-ethylhexyl) phthalate (DEHP) is widely utilized as a plasticizer in industrial manufacturing to enhance the durability and flexibility of plastics. Studies have depicted that DEHP exposure may be associated with multiple cancers, including colorectal, liver and prostate cancer. However, the effects and underlying mechanisms of DEHP on bladder cancer progression remain unspecific.
View Article and Find Full Text PDFFood Chem
December 2024
West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China. Electronic address:
Effective monitoring of veterinary drug residues in food is essential for legislation compliance and food safety, yet remains challenging due to low concentrations and complex matrices. This study introduced a miniaturized 96-well electromembrane extraction (EME) technique for pre-concentration and isolation 80 prohibited/restricted veterinary drugs from honey samples. Three liquid membranes were developed and characterized: V1 ("V" for veterinary), a mixture of 2-undecanone and 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!