We used Gaussian separation and receiver operating characteristic (ROC) curves to optimize the neutron sensitivity and gamma rejection of an ultra-thin LiF:ZnS(Ag)-scintillator-based neutron detector paired with a silicon photomultiplier (SiPM). We recorded the waveforms while operating the detector in a monochromatic cold neutron beam and in the presence of isotopic Cs and Co gamma sources. We used a two-window charge comparison (CC) pulse-shape discrimination (PSD) technique to distinguish the neutron capture events from other types of signals. By feeding the recorded waveforms through variants of this algorithm, it was possible to optimize the duration of the integration windows [(0-100 ns) for the prompt window and (100-2300 ns)] for the delayed window. We then computed the detector's ROC curve from waveform recordings and compared that with the experimental performance. We also used this procedure to compare a series of detector configurations to select the optimal bias voltage for the SiPM photosensor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8207483PMC
http://dx.doi.org/10.1109/TNS.2019.2953875DOI Listing

Publication Analysis

Top Keywords

neutron detector
8
waveform recordings
8
roc curves
8
recorded waveforms
8
lifznsag neutron
4
detector
4
detector performance
4
performance optimized
4
optimized waveform
4
recordings roc
4

Similar Publications

The Particle Time of Flight (PTOF) diagnostic is a chemical vapor deposition diamond-based detector and is the only diagnostic for measuring nuclear bang times of low yield (<1013) shots on the National Ignition Facility. Recently, a comprehensive study of detector impulse responses revealed certain detectors with very fast and consistent impulse responses with a rise time of <50 ps, enabling low yield burn history measurements. At the current standoff of 50 cm, this measurement is possible with fast 14 MeV neutrons from deuterium-tritium (DT) fusion plasmas.

View Article and Find Full Text PDF

For the purpose of this study, four natural rock samples-namely, diorite, granodiorite, tonalite, and granite-are being investigated about their radiation attenuation. The elemental composition of the rocks was obtained through Energy dispersive X-ray spectroscopy (EDX) which examines the microstructural and localized area elemental analyses of the four rock samples. A Monte Carlo simulation (MCNP) was used to determine and evaluate the investigated samples.

View Article and Find Full Text PDF

This study proposes a novel, highly sensitive neutron detector design utilizing a unique multi-layered configuration. Each layer consists of a LiF: ZnS(Ag) scintillator coupled with a transparent neutron moderator that also functions as a light guide for the Silicon Photomultiplier (SiPM) light sensor. This design offers a cost-effective and readily available alternative for existing neutron detectors.

View Article and Find Full Text PDF

Development of anticoincidence detector specializing in small-angle Compton scattering gamma rays for boron neutron capture therapy.

Appl Radiat Isot

December 2024

Division of Quantum and Radiation Engineering, Graduate School of Engineering, Osaka Metropolitan University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570, Japan.

A novel anticoincidence detector is proposed for the measurement of 478 keV gamma radiation for evaluation of boron neutron capture therapy. The Compton continuum around the target photopeak position is effectively suppressed by measuring only the Compton gamma rays scattered at small angles from the primary detector. A numerical evaluation using Monte Carlo simulations estimated an 80% reduction in counts, and the developed prototype detector showed 4% suppression of the Compton continuum of cobalt-60 gamma rays.

View Article and Find Full Text PDF

In this study, the gamma radiation shielding properties of concrete samples reinforced with 10%, 20%, 30%, 40% and 50% of the cement weight of brass alloy were investigated. To test gamma shielding performance of the samples, mass and linear attenuation coefficients, half and tenth value layers, effective atomic number and radiation protection efficiency parameters were determined experimentally, theoretically and Monte Carlo simulations (GEANT4 and FLUKA). The studies were performed at 11 different gamma energies that range from 59.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!