Increased duration of pollen and mold exposure are linked to climate change.

Sci Rep

Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine and Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.

Published: June 2021

AI Article Synopsis

Article Abstract

Pollen and molds are environmental allergens that are affected by climate change. As pollen and molds exhibit geographical variations, we sought to understand the impact of climate change (temperature, carbon dioxide (CO), precipitation, smoke exposure) on common pollen and molds in the San Francisco Bay Area, one of the largest urban areas in the United States. When using time-series regression models between 2002 and 2019, the annual average number of weeks with pollen concentrations higher than zero increased over time. For tree pollens, the average increase in this duration was 0.47 weeks and 0.51 weeks for mold spores. Associations between mold, pollen and meteorological data (e.g., precipitation, temperature, atmospheric CO, and area covered by wildfire smoke) were analyzed using the autoregressive integrated moving average model. We found that peak concentrations of weed and tree pollens were positively associated with temperature (p < 0.05 at lag 0-1, 0-4, and 0-12 weeks) and precipitation (p < 0.05 at lag 0-4, 0-12, and 0-24 weeks) changes, respectively. We did not find clear associations between pollen concentrations and CO levels or wildfire smoke exposure. This study's findings suggest that spore and pollen activities are related to changes in observed climate change variables.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8211740PMC
http://dx.doi.org/10.1038/s41598-021-92178-zDOI Listing

Publication Analysis

Top Keywords

climate change
12
pollen molds
12
change pollen
8
tree pollens
8
pollen
6
increased duration
4
duration pollen
4
pollen mold
4
mold exposure
4
exposure linked
4

Similar Publications

Anthropogenic disturbances degrade ecosystems, elevating the risk of emerging infectious diseases from wildlife. However, the key environmental factors for preventing tick-borne disease infection in relation to host species, landscape components, and climate conditions remain unknown. This study focuses on identifying crucial environmental factors contributing to the outbreak of severe fever with thrombocytopenia syndrome (SFTS), a tick-borne disease, in Miyazaki Prefecture, southern Japan.

View Article and Find Full Text PDF

Extending from Adaptation to Resilience Pathways: Perspectives from the Conceptual Framework to Key Insights.

Environ Manage

January 2025

TECNALIA Research & Innovation, Basque Research and Technology Alliance (BRTA), Energy, climate, and urban transition, Parque Tecnológico de Bizkaia, Derio, Spain.

The extent and timescale of climate change impacts remain uncertain, including global temperature increase, sea level rise, and more frequent and intense extreme events. Uncertainties are compounded by cascading effects. Nevertheless, decision-makers must take action.

View Article and Find Full Text PDF

Tropical peatlands are carbon-dense ecosystems that are significant sources of atmospheric methane (CH). Recent work has demonstrated the importance of trees as an emission pathway for CH from the peat to the atmosphere. However, there remain questions over the processes of CH production in these systems and how they relate to substrate supply.

View Article and Find Full Text PDF

The evolutionary history underlying gradients in species richness is still subject to discussions and understanding the past niche evolution might be crucial in estimating the potential of taxa to adapt to changing environmental conditions. In this study we intend to contribute to elucidation of the evolutionary history of liverwort species richness distributions along elevational gradients at a global scale. For this purpose, we linked a comprehensive data set of genus occurrences on mountains worldwide with a time-calibrated phylogeny of liverworts and estimated mean diversification rates (DivElev) and mean ages (AgeElev) of the respective genera per elevational band.

View Article and Find Full Text PDF

Agroforestry systems are known to enhance soil health and climate resilience, but their impact on greenhouse gas (GHG) emissions in rubber-based agroforestry systems across diverse configurations is not fully understood. Here, six representative rubber-based agroforestry systems (encompassing rubber trees intercropped with arboreal, shrub, and herbaceous species) were selected based on a preliminary investigation, including Hevea brasiliensis intercropping with Alpinia oxyphylla (AOM), Alpinia katsumadai (AKH), Coffea arabica (CAA), Theobroma cacao (TCA), Cinnamomum cassia (CCA), and Pandanus amaryllifolius (PAR), and a rubber monoculture as control (RM). Soil physicochemical properties, enzyme activities, and GHG emission characteristics were determined at 0-20 cm soil depth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!