Efficient ethylene purification by a robust ethane-trapping porous organic cage.

Nat Commun

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, China.

Published: June 2021

The removal of ethane (CH) from its analogous ethylene (CH) is of paramount importance in the petrochemical industry, but highly challenging due to their similar physicochemical properties. The use of emerging porous organic cage (POC) materials for CH/CH separation is still in its infancy. Here, we report the benchmark example of a truncated octahedral calix[4]resorcinarene-based POC adsorbent (CPOC-301), preferring to adsorb CH than CH, and thus can be used as a robust absorbent to directly separate high-purity CH from the CH/CH mixture. Molecular modelling studies suggest the exceptional CH selectivity is due to the suitable resorcin[4]arene cavities in CPOC-301, which form more multiple C-H···π hydrogen bonds with CH than with CH guests. This work provides a fresh avenue to utilize POC materials for highly selective separation of industrially important hydrocarbons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8211788PMC
http://dx.doi.org/10.1038/s41467-021-24042-7DOI Listing

Publication Analysis

Top Keywords

porous organic
8
organic cage
8
poc materials
8
efficient ethylene
4
ethylene purification
4
purification robust
4
robust ethane-trapping
4
ethane-trapping porous
4
cage removal
4
removal ethane
4

Similar Publications

Comparison of Hydrogen Bonded Organic Framework with Reduced Graphene Oxide-Pd Based Nanocatalyst: Which One Is More Efficient for Entrapment of Nitrophenol Pollutants?

Langmuir

January 2025

Prof. Rashidi Laboratory of Organometallic Chemistry & Material Chemistry, Department of Chemistry, College of Science, Shiraz University, Shiraz, 7194684795, Iran.

In this study, a Pd nanoparticles@hydrogen-bonded organic framework (Pd NPs@HOF) thin film was fabricated at the toluene-water interface. The HOF was formed through the interaction of trimesic acid (TMA) and melamine (Mel) in the water phase, while Pd(0) was produced from the reduction of [PdCl(cod)] in the organic phase. The as-synthesized Pd NPs@HOF thin film was demonstrated to be an effective catalyst for the selective reduction of -nitrophenol and -nitrophenol to -aminophenol and -aminophenol.

View Article and Find Full Text PDF

Unlike homogeneous metal complexes, achieving absolute control over reaction selectivity in heterogeneous catalysts remains a formidable challenge due to the unguided molecular adsorption/desorption on metal-surface sites. Conventional organic surface modifiers or ligands and rigid inorganic and metal-organic porous shells are not fully effective. Here, we introduce the concept of "ligand-porous shell cooperativity" to desirably reaction selectivity in heterogeneous catalysis.

View Article and Find Full Text PDF

Photocatalytic conversion of CO2 into value-added chemicals offers a propitious alternative to traditional thermal methods, contributing to environmental remediation and energy sustainability. In this respect, covalent organic frameworks (COFs), are crystalline porous materials showcasing remarkable efficacy in CO2 fixation facilitated by visible light owing to their excellent photochemical properties. Herein, we employed Lewis acidic Zn(II) anchored pyrene-based COF (Zn(II)@Pybp-COF) to facilitate the photocatalytic CO2 utilization and transformation to 2-oxazolidinones.

View Article and Find Full Text PDF

Tandem construction of flavone-bridged conjugated porous polymers for photosynthesis of 2,3-dihydrobenzofurans.

Chem Commun (Camb)

January 2025

State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.

Conjugated porous polymers bearing flavone moieties (FL-CPPs) were synthesized a tandem approach. The carbonylative Sonogashira coupling in tandem with cyclization guided the assembling of building blocks with the accompanied production of flavone skeletons. The FL-CPPs were proved to be efficient metal-free photocatalysts for the [3+2] cycloaddition of phenols with olefins under the irradiation of visible-light.

View Article and Find Full Text PDF

A short review on polysaccharide-based nanocomposite adsorbents for separation and biomedical applications.

Int J Biol Macromol

January 2025

Department of Chemical Engineering, Arak University, Arak, Iran. Electronic address:

Polysaccharides such as chitosan, alginate, cellulose, and carrageenan have emerged as promising adsorbents due to their biodegradability, abundant availability, and diverse chemical functionality. These biopolymers exhibit promising performance for adsorption of a wide range of pollutants including heavy metals (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!