AI Article Synopsis

  • Human embryo development involves significant shape changes after implantation, but the specific molecular processes are not fully understood in humans, unlike in mice.
  • Researchers studied events in human embryos between implantation and gastrulation using single-cell analysis, highlighting that embryonic epiblast cells shift through different states and produce FGF signals for tissue growth.
  • They identified a unique group of extra-embryonic hypoblast cells that could serve as an anterior signaling center, influencing the development of the embryo's front and back (anterior-posterior axis).

Article Abstract

Following implantation, the human embryo undergoes major morphogenetic transformations that establish the future body plan. While the molecular events underpinning this process are established in mice, they remain unknown in humans. Here we characterise key events of human embryo morphogenesis, in the period between implantation and gastrulation, using single-cell analyses and functional studies. First, the embryonic epiblast cells transition through different pluripotent states and act as a source of FGF signals that ensure proliferation of both embryonic and extra-embryonic tissues. In a subset of embryos, we identify a group of asymmetrically positioned extra-embryonic hypoblast cells expressing inhibitors of BMP, NODAL and WNT signalling pathways. We suggest that this group of cells can act as the anterior singalling centre to pattern the epiblast. These results provide insights into pluripotency state transitions, the role of FGF signalling and the specification of anterior-posterior axis during human embryo development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8211662PMC
http://dx.doi.org/10.1038/s41467-021-23758-wDOI Listing

Publication Analysis

Top Keywords

human embryo
8
single cell
4
cell characterisation
4
human
4
characterisation human
4
human embryogenesis
4
embryogenesis identifies
4
identifies pluripotency
4
pluripotency transitions
4
transitions putative
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!