Cystic fibrosis is a genetic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, leading to dysfunction of the CFTR protein. CFTR dysfunction leads to disease in the respiratory and gastrointestinal systems. Disorders of the cardiovascular system in individuals with CF are usually attributed to secondary effects from progressive lung disease. However, CFTR has been localized to vascular endothelium and smooth muscle, suggesting that CFTR dysfunction may directly impact cardiovascular function. As treatments for CF improve and life-expectancy increases, the risk of vascular disease may increase in prevalence related to primary and secondary CFTR dysfunction, chronic systemic inflammation, nutritional health and hyperglycemia in individuals with CF related diabetes. Here we review the available literature on CF and the cardiovascular system, examining the secondary effects and evidence for direct CFTR dysfunction in the heart, aorta, pulmonary vessels, and vasculature, as well as future directions and treatment options.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcf.2021.04.016 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!