Cardiac dysfunction is a common phenotypic manifestation of primary mitochondrial disease with multiple nuclear and mitochondrial DNA pathogenic variants as a cause, including disorders of mitochondrial translation. To date, five patients have been described with pathogenic variants in MRPL44, encoding the ml44 protein which is part of the large subunit of the mitochondrial ribosome (mitoribosome). Three presented as infants with hypertrophic cardiomyopathy, mild lactic acidosis, and easy fatigue and muscle weakness, whereas two presented in adolescence with myopathy and neurological symptoms. We describe two infants who presented with cardiomyopathy from the neonatal period, failure to thrive, hypoglycemia and in one infant lactic acidosis. A decompensation of the cardiac function in the first year resulted in demise. Exome sequencing identified compound heterozygous variants in the MRPL44 gene including the known pathogenic variant c.467 T > G and two novel pathogenic variants. We document a combined respiratory chain enzyme deficiency with emphasis on complex I and IV, affecting heart muscle tissue more than skeletal muscle or fibroblasts. We show this to be caused by reduced mitochondrial DNA encoded protein synthesis affecting all subunits, and resulting in dysfunction of complex I and IV assembly. The degree of oxidative phosphorylation dysfunction correlated with the impairment of mitochondrial protein synthesis due to different pathogenic variants. These functional studies allow for improved understanding of the pathogenesis of MRPL44-associated mitochondrial disorder.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8289749 | PMC |
http://dx.doi.org/10.1016/j.ymgme.2021.06.001 | DOI Listing |
BMC Med
January 2025
Department of Cardiothoracic Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou, 215000, China.
Background: Current research underscores the need to better understand the pathogenic mechanisms and treatment strategies for idiopathic pulmonary fibrosis (IPF). This study aimed to identify key targets involved in the progression of IPF.
Methods: We employed Mendelian randomization (MR) with three genome-wide association studies and four quantitative trait loci datasets to identify key driver genes for IPF.
Gastric Cancer
January 2025
Division of Pathology, Shizuoka Cancer Center, Shizuoka, Japan.
CTNNA1 codes α-1 catenin, a molecule that functions in intercellular adhesion in combination with E-cadherin (coded by CDH1). A germline pathogenic variant (GPV) of CTNNA1 increases the risk of hereditary diffuse gastric cancer (HDGC); however, this GPV has not been reported in Japan. A 35-year-old Japanese man with an advanced gastric cancer underwent comprehensive genome profiling (CGP), which led to the detection of a CTNNA1 GPV (p.
View Article and Find Full Text PDFProstate Cancer Prostatic Dis
January 2025
Copenhagen Prostate Cancer Center, Department of Urology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
Background: Men with pathogenic BRCA1/2 variants are at higher risk of prostate cancer We included men with likely pathogenic/pathogenic (LP/P) variants in BRCA1/2 in a prostate-specific antigen (PSA) screening program after cascade germline testing since 2014. PSA was tested yearly and an age-specific low PSA threshold for biopsy was used, to determine if a low PSA threshold for biopsy is justified for men with pathogenic BRCA1/2 variants.
Methods: From 2014 to 2023 a total of 340 men were included in the program.
Sci Rep
January 2025
Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, 318 Bayi Avenue, Nanchang, 330006, China.
To explore the genetic cause of a four-generation severe intellectual disability in a Chinese family using nanopore sequencing and to provide genetic counseling and reproductive guidance for family members. Multiple genetic analyses of the proband and family members were performed, including chromosome karyotype analysis, whole exome sequencing, nanopore sequencing, PCR amplification, and Sanger sequencing. The results of G-binding karyotyping, CGG repeats for FMR1, GGC repeats for NOTCH2NCL, and trio-whole-exome sequencing were negative for the proband and his parents.
View Article and Find Full Text PDFTransl Psychiatry
January 2025
Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
The pace of biological aging varies between people independently of chronological age and mitochondria dysfunction is a key hallmark of biological aging. We hypothesized that higher functional impact (FI) score of mitochondrial DNA (mtDNA) variants might contribute to premature aging and tested the relationships between a novel FI score of mtDNA variants and epigenetic and biological aging in young adulthood. A total of 81 participants from the European Longitudinal Study of Pregnancy and Childhood (ELSPAC) prenatal birth cohort had good quality genetic data as well as blood-based markers to estimate biological aging in the late 20.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!