The emerald ash borer (EAB) is an exotic forest pest that has killed millions of ash trees in the United States and Canada, resulting in an ecological disaster and billions of dollars in economic losses of urban landscape and forest trees. The beetle was first detected in Michigan in 2002 and has spread through much of the Eastern and Midwestern U.S., reaching Minnesota in 2009. Since then, it has spread across the state and poses a great risk to the more than 1 billion ash trees in Minnesota. The larval stage of EAB creates wounds on trees as they feed on the inner bark, causing disruption of water and sap flow that results in tree death. The fungal community associated with EAB larval galleries is poorly understood and the role these fungi may play in tree death is not known. This study describes fungi isolated from EAB larval galleries sampled throughout the main geographic areas of Minnesota where ash is affected by EAB. Fungal cultures were identified by extracting genomic DNA and sequencing the ITS region of the rDNA. Results from 1126 isolates reveal a diverse assemblage of fungi and three functional guilds comprised of canker pathogens, wood decay, and entomopathogenic fungi. The most common canker-associated genera were Cytospora followed by Phaeoacremonium, Paraconiothyrium, Coniothyrium, Nectria, Diplodia, and Botryosphaeria. Fungi in the Basidiomycota were nearly all wood decay causing fungi and many were species of pioneer colonizing genera including Sistotrema, Irpex, Peniophora, Phlebia and Ganoderma. Some of these fungi seriously affect urban trees, having the potential to cause rapid wood decay resulting in hazardous tree situations. Several entomopathogenic genera with the potential for biological control of EAB were also isolated from galleries. Purpureocillium was the most commonly isolated genus, followed by Beauveria, Clonostachys, Lecanicillium, Akanthomyces, Cordyceps, Microcera, Tolypocladium, and Pochonia. The results identify important fungal functional guilds that are occupying a new niche in ash trees resulting from EAB and include fungi that may accelerate decline in tree health, increase hazard tree situations, or may provide options for biological control of this destructive invasive insect.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.funbio.2021.02.004DOI Listing

Publication Analysis

Top Keywords

ash trees
12
wood decay
12
fungi
9
emerald ash
8
ash borer
8
tree death
8
eab larval
8
larval galleries
8
functional guilds
8
tree situations
8

Similar Publications

Evaluating Spherical Trees in the Urban Environment in Budapest (Hungary).

Plants (Basel)

January 2025

Department of Landscape Protection and Reclamation, Institute of Landscape Architecture, Urban Planning and Garden Art, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary.

The world's big cities, including Budapest, are becoming more crowded, with more and more people living in smaller and smaller spaces. There is an increasing demand for more green space and trees, with less vertical and less horizontal space. In addition, deteriorating environmental conditions are making it even more difficult for trees to grow and survive.

View Article and Find Full Text PDF

Determination of the Critical Voltage for the Observation of Uncoated Wood Samples in Electron Microscopy.

Materials (Basel)

January 2025

Department of Wood Processing and Biomaterials, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 1176, 16500 Prague, Czech Republic.

Electron microscopy (EM) is a key tool for studying the microstructure of wood; however, observing uncoated samples poses a challenge due to surface charging. This study aims to identify the critical voltage that allows for the effective observation of uncoated wood samples without significant loading. As part of the experiment, samples of different wood species were tested, including Acacia ( L.

View Article and Find Full Text PDF

Grazing-Induced Habitat Degradation: Challenges to Giant Panda Survival Resulting from Declining Bamboo and Soil Quality.

Animals (Basel)

January 2025

Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China.

Grazing is the primary human-induced disturbance affecting giant panda () habitats and has a severe impact on the long-term sustainability of the giant panda population. To address the lack of quantitative studies on grazing's impact on habitat quality, we selected China's most heavily grazed giant panda nature reserve. Utilizing the Maxent model and stoichiometric analysis, we investigated habitat quality degradation caused by grazing and quantified changes in bamboo nutritional quality and soil physicochemical properties.

View Article and Find Full Text PDF

Hymenoscyphus fraxineus, the causal agent of Ash Dieback (ADB), has been introduced to eastern Europe in the 1990s from where it spread causing decline in European ash populations. However, the genetic basis of the molecular response in tolerant and susceptible ash trees to this disease is still largely unknown. We performed RNA-sequencing to study the transcriptomic response to the disease in four ash genotypes (ADB-tolerant FAR3 and FS36, and ADB-susceptible UW1 and UW2), during a time-course of 7, 14, 21, and 28 days post-inoculation, including mock-inoculated trees as control samples for each sampling time point.

View Article and Find Full Text PDF

Background: Estimating the CO response of forest trees is of great significance in plant photosynthesis research. CO response measurement is traditionally employed under steady state conditions. With the development of open-path gas exchange systems, the Dynamic Assimilation Technique (DAT), allows measurement under non-steady state conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!