Background: To investigate the ecological effects of chemical and biological control methods on tobacco wildfire disease, a plot field experiment was conducted to compare the control efficiency and mechanisms of a chemical pesticide (kasugamycin wettable powder, KWP) and a biological control agent (BCA) through high-throughput sequencing of bacterial 16S rRNA genes.
Results: The results showed that the BCA displayed better performance in decreasing the disease index and morbidity of tobacco than the chemical pesticide. By monitoring the endophytic community within tobacco leaves, it was found that the control effects of these two methods might be mediated by different changes in the endophytic bacterial communities and community assembly patterns. The application of either method decreased the taxonomic diversity of the leaf endophytic community. Compared to the BCA, KWP showed a more significant effect on the endophytic community structure, while the endophytic community treated with the BCA was able to return to the original state, which presented much lower disease infection. The disease control efficiency of KWP and BCA treatments might be achieved by increasing the abundance of Sphingomonas and Streptophyta, respectively. Furthermore, an analysis of the ecological processes in community assembly indicated that the BCA strengthened the homogeneous and variable selection, while KWP enhanced ecological drift.
Conclusions: The results suggested different control mechanisms between KWP and BCA treatments, which will help in developing diverse ecological strategies for plant disease control.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8212473 | PMC |
http://dx.doi.org/10.1186/s12866-021-02237-8 | DOI Listing |
Curr Microbiol
January 2025
DBT-North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India.
Aquilaria malaccensis Lam., an Agarwood-producing tree native to Southeast Asia, secretes oleoresin, a resin with diverse applications, in response to injuries. To explore the role of endosphere microbial communities during Agarwood development, we utilized a metagenomics approach across three stages: non-symptomatic (NC), symptomatic early (IN), and symptomatic mature (IN1).
View Article and Find Full Text PDFCommun Biol
January 2025
Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Department of Oceanography, Key Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China.
Leaf endospheres harbor diverse bacterial communities, comprising generalists and specialists, that profoundly affect ecosystem functions. However, the ecological dynamics of generalist and specialist leaf-endophytic bacteria and their responses to climate change remain poorly understood. We investigated the diversity and environmental responses of generalist and specialist bacteria within the leaf endosphere of mangroves across China.
View Article and Find Full Text PDFFront Plant Sci
December 2024
United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Japan.
Hairy vetch ( Roth), a leguminous plant with nitrogen-fixing ability, is used as a cover crop and has the potential to suppress weeds and plant diseases. The microbial composition, particularly fungal endophytes, which may be related to the beneficial functions of this crop, has not been previously studied. In this study, we analyzed the diversity and function of culturable fungal endophytes associated with hairy vetch from eight locations across Japan.
View Article and Find Full Text PDFJ Environ Manage
December 2024
School of Environmental Sciences, University of Guelph, 50 Stone Rd E, Guelph, ON, N1H 2W1, Canada. Electronic address:
Hybrid poplars are widely recognized for their effectiveness in remediating subsurface aromatic hydrocarbon contaminants, including benzene, toluene, ethylbenzene, and xylene isomers (BTEX). While BTEX compounds are frequently found in the transpiration streams of poplars at contaminated sites, the microbial dynamics within these trees, particularly in response to hydrocarbon exposure, remain underexplored. This study utilized high-throughput amplicon sequencing to investigate the trunk microbiome in hybrid poplars at a field-scale toluene phytoremediation site.
View Article and Find Full Text PDFISME Commun
January 2024
School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA 98195-2100, United States.
Endophytes are microbes living within plant tissue, with some having the capacity to fix atmospheric nitrogen in both a free-living state and within their plant host. They are part of a diverse microbial community whose interactions sometimes result in a more productive symbiosis with the host plant. Here, we report the co-isolation of diazotrophic endophytes with synergistic partners sourced from two separate nutrient-limited sites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!