Introduction: Commuting exposes millions of people to carcinogens from traffic-related air pollution (TRAP) but is seldomly considered in epidemiologic studies of lung cancer. In the prospective United Kingdom (UK) Biobank cohort study, we investigated associations between commute patterns, residential nitrogen dioxide concentrations (NO; a surrogate for TRAP), and lung cancer risk.

Methods: We analyzed 234,124 employed participants at baseline (2006-2010). There were 493 incident lung cancer cases diagnosed over an average 7-year follow-up. Subjects were cross-classified into exclusive categories of commute mode (automobile, public transportation, walking, cycling, active mixture, and other mixture) and frequency (regular: 1-4, often: ≥5 work-bound trips/week). Annual average residential NO concentrations in 2005-2007 were estimated with land use regression. Multivariable Cox regression was used to estimate associations between commute patterns, NO quartiles, and incident lung cancer. We conducted analyses stratified by NO (>, ≤median = 28.3 µg/m) and potential confounders such as sex and smoking.

Results: Compared to regular automobile use, commuting often by public transportation was associated with increased lung cancer risk (hazard ratio (HR) = 1.58, 95% confidence intervals (CI):1.08-2.33). Additionally, we found a positive exposure-response relationship with residential NO (HR = 1.21, 95 %CI: 0.90-1.62; HR = 1.48, 95 %CI: 1.10-1.99; HR = 1.58, 95 %CI: 1.13-2.23; p-trend = 3.1 × 10). The public transportation association was observed among those with higher NO (p-interaction = 0.02). Other commute categories were not associated with risk.

Conclusions: Commuters residing in high-NO areas who often use public transportation could have elevated lung cancer risk compared to regular automobile users. These results warrant investigations into which component(s) of public transportation contribute to the observed association with increased lung cancer risk.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8292218PMC
http://dx.doi.org/10.1016/j.envint.2021.106698DOI Listing

Publication Analysis

Top Keywords

lung cancer
32
public transportation
20
cancer risk
16
commute patterns
12
patterns residential
8
traffic-related air
8
air pollution
8
lung
8
cancer
8
biobank cohort
8

Similar Publications

Newly Proposed Dose of Daclatasvir to Prevent Lethal SARS-CoV-2 Infection in Human Transgenic ACE-2 Mice.

Viruses

November 2024

Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-361, RJ, Brazil.

Coronavirus disease 2019 (COVID-19) still causes death in elderly and immunocompromised individuals, for whom the sustainability of the vaccine response may be limited. Antiviral treatments, such as remdesivir or molnupiravir, have demonstrated limited clinical efficacy. Nirmatrelvir, an acute respiratory syndrome coronavirus 2 (SARS-CoV-2) major protease inhibitor, is clinically effective but has been associated with viral rebound and antiviral resistance.

View Article and Find Full Text PDF

Combining radiotherapy with targeted therapy benefits patients with advanced epidermal growth factor receptor-mutated non-small cell lung cancer (EGFRm NSCLC). However, the optimal strategy to combine EGFR tyrosine kinase inhibitors (TKIs) with radiotherapy for maximum efficacy and minimal toxicity is still uncertain. Notably, EVs, which serve as communication mediators among tumor cells, play a crucial role in the anti-tumor immune response.

View Article and Find Full Text PDF

Non-small cell lung cancer (NSCLC) is the predominant form of lung cancer and poses a significant public health challenge. Early detection is crucial for improving patient outcomes, with serum biomarkers such as carcinoembryonic antigen (CEA), squamous cell carcinoma antigen (SCCAg), and cytokeratin fragment 19 (CYFRA 21-1) playing a critical role in early screening and pathological classification of NSCLC. However, due to being mainly based on corresponding antibody binding reactions, existing detection technologies for these serum biomarkers have shortcomings such as complex operations, high false positive rates, and high costs.

View Article and Find Full Text PDF

Here, we report on the synthesis and biological evaluation of a novel peptide-drug conjugate, P6-SN38, which consists of the EGFR-specific short cyclic peptide, P6, and the Topo I inhibitor SN38, which is a bioactive metabolite of the anticancer drug irinotecan. SN38 is attached to the peptide at position 20 of the E ring's tertiary hydroxyl group via a mono-succinate linker. The developed peptide-drug conjugate (PDC) exhibited sub-micromolar anticancer activity on EGFR-positive (EGFR+) cell lines but no effect on EGFR-negative (EGFR-) cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!