Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomes have been detected in wastewater worldwide. However, the assessment of SARS-CoV-2 infectivity in wastewater has been limited due to the stringent requirements of biosafety level 3. The main objective of this study is to investigate the applicability of capsid integrity RT-qPCR for the selective detection of intact SARS-CoV-2 in wastewater. Three capsid integrity reagents, namely ethidium monoazide (EMA, 0.1-100 μM), propidium monoazide (PMA, 0.1-100 μM), and cis-dichlorodiammineplatinum (CDDP, 0.1-1000 μM), were tested for their effects on different forms (including free genomes, intact and heat-inactivated) of murine hepatitis virus (MHV), which was used as a surrogate for SARS-CoV-2. CDDP at a concentration of 100 μM was identified as the most efficient reagent for the selective detection of infectious MHV by RT-qPCR (CDDP-RT-qPCR). Next, two common virus concentration methods including ultrafiltration (UF) and polyethylene glycol (PEG) precipitation were investigated for their compatibility with capsid integrity RT-qPCR. The UF method was more suitable than the PEG method since it recovered intact MHV (mean ± SD, 38% ± 29%) in wastewater much better than the PEG method did (0.013% ± 0.015%). Finally, CDDP-RT-qPCR was compared with RT-qPCR alone for the detection of SARS-CoV-2 in 16 raw wastewater samples collected in the Greater Tokyo Area. Five samples were positive for SARS-CoV-2 when evaluated by RT-qPCR alone. However, intact SARS-CoV-2 was detected in only three positive samples when determined by CDDP-RT-qPCR. Although CDDP-RT-qPCR was unable to determine the infectivity of SARS-CoV-2 in wastewater, this method could improve the interpretation of positive results of SARS-CoV-2 obtained by RT-qPCR.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8184355 | PMC |
http://dx.doi.org/10.1016/j.scitotenv.2021.148342 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!