Predicting cell behaviour parameters from glioblastoma on a chip images. A deep learning approach.

Comput Biol Med

Aragon Institute of Engineering Research (I3A), University of Zaragoza, Mariano Esquillor S/N, Zaragoza, Spain; Mechanical Engineering Department, University of Zaragoza, María de Luna S/N, Zaragoza, Spain; Aragon Institute of Health Research (IIS Aragón), University of Zaragoza, San Juan Bosco 13, Zaragoza, Spain. Electronic address:

Published: August 2021

The broad possibilities offered by microfluidic devices in relation to massive data monitoring and acquisition open the door to the use of deep learning technologies in a very promising field: cell culture monitoring. In this work, we develop a methodology for parameter identification in cell culture from fluorescence images using Convolutional Neural Networks (CNN). We apply this methodology to the in vitro study of glioblastoma (GBM), the most common, aggressive and lethal primary brain tumour. In particular, the aim is to predict the three parameters defining the go or grow GBM behaviour, which is determinant for the tumour prognosis and response to treatment. The data used to train the network are obtained from a mathematical model, previously validated with in vitro experimental results. The resulting CNN provides remarkably accurate predictions (Pearson's ρ > 0.99 for all the parameters). Besides, it proves to be sound, to filter noise and to generalise. After training and validation with synthetic data, we predict the parameters corresponding to a real image of a microfluidic experiment. The obtained results show good performance of the CNN. The proposed technique may set the first steps towards patient-specific tools, able to predict in real-time the tumour evolution for each particular patient, thanks to a combined in vitro-in silico approach.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2021.104547DOI Listing

Publication Analysis

Top Keywords

deep learning
8
cell culture
8
predicting cell
4
cell behaviour
4
parameters
4
behaviour parameters
4
parameters glioblastoma
4
glioblastoma chip
4
chip images
4
images deep
4

Similar Publications

Deep Equilibrium Unfolding Learning for Noise Estimation and Removal in Optical Molecular Imaging.

Comput Med Imaging Graph

January 2025

CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China; National Key Laboratory of Kidney Diseases, Beijing 100853, China. Electronic address:

In clinical optical molecular imaging, the need for real-time high frame rates and low excitation doses to ensure patient safety inherently increases susceptibility to detection noise. Faced with the challenge of image degradation caused by severe noise, image denoising is essential for mitigating the trade-off between acquisition cost and image quality. However, prevailing deep learning methods exhibit uncontrollable and suboptimal performance with limited interpretability, primarily due to neglecting underlying physical model and frequency information.

View Article and Find Full Text PDF

Objective: The extent of resection (EOR) and postoperative residual tumor (RT) volume are prognostic factors in glioblastoma. Calculations of EOR and RT rely on accurate tumor segmentations. Raidionics is an open-access software that enables automatic segmentation of preoperative and early postoperative glioblastoma using pretrained deep learning models.

View Article and Find Full Text PDF

Computational Methods for Predicting Chemical Reactivity of Covalent Compounds.

J Chem Inf Model

January 2025

Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, People's Republic of China.

In recent decades, covalent inhibitors have emerged as a promising strategy for therapeutic development, leveraging their unique mechanism of forming covalent bonds with target proteins. This approach offers advantages such as prolonged drug efficacy, precise targeting, and the potential to overcome resistance. However, the inherent reactivity of covalent compounds presents significant challenges, leading to off-target effects and toxicities.

View Article and Find Full Text PDF

While single-cell experiments provide deep cellular resolution within a single sample, some single-cell experiments are inherently more challenging than bulk experiments due to dissociation difficulties, cost, or limited tissue availability. This creates a situation where we have deep cellular profiles of one sample or condition, and bulk profiles across multiple samples and conditions. To bridge this gap, we propose BuDDI (BUlk Deconvolution with Domain Invariance).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!