Background: An increasing number of rodent model systems use injection of DNA or viral constructs in the neonatal brain. However, approaches for reliable positioning and stereotaxic injection at this developmental stage are limited, typically relying on handheld positioning or molds that must be re-aligned for use in a given laboratory.
New Method: A complete protocol and open-source software pipeline for generating 3D-printed head molds derived from a CT scan of a neonatal mouse head cast, together with a universal adapter that can be placed on a standard stereotaxic stage.
Results: A series of test injections with adenovirus encoding red fluorescent protein, or Fluorogold, were conducted using original clay molds and newly generated 3D printed molds. Several metrics were used to compare spread and localization of targeted injections.
Comparison With Existing Methods: The new method of head mold generation gave comparable results to the field standard, but also allowed the rapid generation of additional copies of each head mold with standardized positioning of the head each time.
Conclusions: This 3D printing pipeline can be used to efficiently develop a series of head molds with standardized injection coordinates across multiple laboratories. More broadly, this pipeline can easily be adapted to other perinatal ages or species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8324552 | PMC |
http://dx.doi.org/10.1016/j.jneumeth.2021.109255 | DOI Listing |
Ann Med
December 2025
Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, People's Republic of China.
Background: The oral microbiota is a diverse and complex community that maintains a delicate balance. When this balance is disturbed, it can lead to acute and chronic infectious diseases such as dental caries and periodontitis, significantly affecting people's quality of life. Developing a new antimicrobial strategy to deal with the increasing microbial variability and resistance is important.
View Article and Find Full Text PDFPathogens
January 2025
Plant Omics Laboratory, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa.
head blight (FHB) is a major disease affecting wheat production worldwide, caused by multiple species. In this study, seven strains were isolated from wheat fields across the Western Cape region of South Africa and identified through phylogenetic analysis. The strains were classified into three species complexes: the species complex (FGSC), species complex (FIESC), and species complex (FTSC).
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Associate Laboratory i4HB-Institute for Health and Bioeconomy, University Institute of Health Sciences-CESPU, 4585-116 Gandra, Portugal.
Oral candidiasis is one of the most common infections in the immunocompromised. Biofilms of species can make treatments difficult, leading to oral infection recurrence. This research aimed to isolate a with anti- effects from the oral cavity.
View Article and Find Full Text PDFAnnu Rev Pathol
January 2025
Department of Molecular Pathobiology, NYU College of Dentistry, New York, NY, USA;
The mycobiome plays a key role in the host immune responses in homeostasis and inflammation. Recent studies suggest that an imbalance in the gut's fungi contributes to chronic, noninfectious diseases such as obesity, metabolic disorders, and cancers. Pathogenic fungi can colonize specific organs, and the gut mycobiome has been linked to the development and progression of various cancers, including colorectal, breast, head and neck, and pancreatic cancers.
View Article and Find Full Text PDFToxins (Basel)
January 2025
Manitoba Agriculture, 65-3rd Avenue NE, Carman, MB R1N 1Y7, Canada.
Fusarium head blight, caused by , continues to be one of the most important and devastating fungal diseases on cereal grains including wheat, barley, and oat crops. produces toxic secondary metabolites that include trichothecene type A and type B mycotoxins. There are many variants of these toxins that are produced, and in the early 2010s, a novel type A trichothecene mycotoxin known as 3ANX (7-α hydroxy,15-deacetylcalonectrin) and its deacetylated product NX (7-α hydroxy, 3,15-dideacetylcalonectrin) were identified in Minnesota, USA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!