Legacy per- and polyfluoroalkyl acids (PFASs) have received global concern over the scientific and public community since this century. However, the information on alternative PFASs pollution in the marine environment, especially in the subtropical marine environment is extremely limited. This study investigated the occurrence, partitioning, potential sources, and ecological risks of PFASs, including perfluoroalkane sulfonic acids (PFSAs), perfluoroalkyl carboxylic acids (PFCAs), and alternative PFASs, in surface water and sediments from the subtropical Beibu Gulf, South China. Concentrations of total PFASs (∑PFASs) were in the range of 0.98-2.64 ng/L in water and 0.19-0.66 ng/g (dry weight, dw) in sediment, respectively. Perfluorooctanoic acid (PFOA) was the most abundant PFAS in water, while PFASs in sediment were dominated by perfluorooctanesulfonic acid (PFOS) and PFOA. Among investigated environmental parameters (total organic carbon (TOC), grain size, water pH, sediment pH, and salinity), TOC and salinity were the dominant factors influencing the sediment-water distribution coefficient (K) of PFOA, perfluorodecanoic acid (PFDA), and perfluorononanoic acid (PFNA). Log K and log soil organic carbon-water distribution coefficient (K) both increase with increasing carbon chain length of PFASs. Significantly positive correlations between PFOS and perfluorohexanoic acid (PFHxA) (p < 0.05), PFOA and perfluoro-1-butane-sulfonamide (FBSA) were observed, suggesting that these PFASs might have similar sources and transport routes. Preliminary environmental risk assessment showed that PFOA and PFOS would not pose risks to the marine aquatic environment. This is the first comprehensive survey of legacy and alternative PFASs in a subtropical area of the Beibu Gulf, which provides significant data and scientific basis to better understand the fate of PFASs and pollution control management.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2021.111485 | DOI Listing |
Anal Chim Acta
March 2025
Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT, 84112, USA. Electronic address:
Background: Perfluorooctane sulfonate (PFOS), one of the most harmful members of the large group of per- and poly-fluoroalkyl substances (PFAS), is notorious for its environmental persistence, bioaccumulation, and toxic effects, raising serious environmental and health concerns. Developing rapid and sensitive methods to detect PFOS in water is critical for effective monitoring and protection against this hazardous chemical.
Results: In this study, we developed rapid and highly sensitive fluorometric sensors (PDI-2+ , PDI-6+ ) for detecting PFOS.
Chemosphere
January 2025
Department of Preventive Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Environmental Health Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea. Electronic address:
Per- and polyfluoroalkyl substances (PFASs) are widely used in consumer products and are easily encountered in daily life. PFASs that accumulate in the human body can negatively affect adolescent health. This study aimed to identify key exposure pathways that influence serum PFAS levels in Korean adolescents, using data from the Korean National Environmental Health Survey (2018-2020) cycle 4.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
School of Resources and Environment, Nanchang University, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang 330031, Jiangxi, China.
The widespread use of perfluoro/polyfluoroalkyl compounds (PFACs) makes it inevitable for them to be released into and affect the environment, and the octanol-water partition coefficient (logK) is a key indicator for evaluating the environmental behavior of trace pollutants and their impact on the environment. However, the determination of logK using experimental means is often time-consuming and laborious, or even unattainable. Therefore, the logKow of 20 per/polyfluoroalkyl compounds obtained from the PubChem database was selected as the object of study, and the 41 chemical descriptors required for modeling were obtained by density-functional theory calculations, and it was found that only two molecular descriptors (A, V) were significantly correlated with the logK, with the correlation of the descriptor A being the was the strongest.
View Article and Find Full Text PDFIntegr Environ Assess Manag
January 2025
Environmental Systems Analysis, Chalmers University of Technology, Gothenburg, Sweden.
This research aims to address the data gaps in freshwater ecotoxicological characterization factors (CFs) for per- and polyfluoroalkyl substances (PFASs). These CFs are essential for incorporating the ecotoxicity impacts of PFAS emissions into life cycle assessments (LCAs). This study has three primary objectives: first, to calculate a comprehensive set of experimental aquatic ecotoxicity CFs for PFASs utilizing the USEtox model (version 2.
View Article and Find Full Text PDFEnviron Health Perspect
January 2025
Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA.
Background: Various countries have instituted risk governance measures to control and minimize the risks of chemicals at the national and international levels. Activities typically include risk assessment based on ) hazard and exposure assessments; ) setting limits on the production, use, and emissions of chemicals; ) enforcement of regulations; and ) monitoring the effectiveness of the measures taken. These steps largely depend on chemical analysis and access to pure chemical reference standards.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!