Inter- and intra-molecular allosteric interactions underpin regulation of activity in a variety of biological macromolecules. In the voltage-gated ion channel superfamily, the conformational state of the voltage-sensing domain regulates the activity of the pore domain via such long-range allosteric interactions. Although the overall structure of these channels is conserved, allosteric interactions between voltage-sensor and pore varies quite dramatically between the members of this superfamily. Despite the progress in identifying key residues and structural interfaces involved in mediating electromechanical coupling, our understanding of the biophysical mechanisms remains limited. Emerging new structures of voltage-gated ion channels in various conformational states will provide a better three-dimensional view of the process but to conclusively establish a mechanism, we will also need to quantitate the energetic contribution of various structural elements to this process. Using rigorous unbiased metrics, we want to compare the efficiency of electromechanical coupling between various sub-families in order to gain a comprehensive understanding. Furthermore, quantitative understanding of the process will enable us to correctly parameterize computational approaches which will ultimately enable us to predict allosteric activation mechanisms from structures. In this review, we will outline the challenges and limitations of various experimental approaches to measure electromechanical coupling and highlight the best practices in the field.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8579740 | PMC |
http://dx.doi.org/10.1016/j.jmb.2021.167104 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!