Background: Innovative customized computer-aided design/computer-assisted manufacture (CAD-CAM) titanium meshes have been proposed for guided alveolar bone regeneration. Histological confirmation on the quality of the regenerated bone is needed. Purpose of the study is to assess the integration capabilities of these innovative meshes and to evaluate the histological features of the regenerated alveolar bone.
Materials And Methods: Twenty partially edentulous patients, with severe posterior mandibular atrophy, underwent a guided bone regeneration technique by means of customized CAD-CAM titanium mesh in association with a mixture of autologous bone in chips and deproteinized bovine bone (1:1). At 9 months of healing, titanium meshes and bone samples were collected and histomorphometrically analyzed.
Results: In all patients, implants were placed according to the original plan. At histologic analysis, mesh appeared well osseointegrated, except that in sites where membrane exposure occurred. In all sites, newly formed tissue resulted highly mineralized, well-organized, and formed by 35.88% of new lamellar bone, 16.42% of woven bone, 10.88% of osteoid matrix, 14.10% of grafted remnants, and 22.72% of medullary spaces. Blood vessels were the 4% of the tissue.
Conclusions: Data from this study support the use of customized CAD/CAM titanium mesh for regeneration of vital, well-structured, and vascularized alveolar bone.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/cid.13025 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!