Longitudinal Label-Free Two-Photon Microscopy of Cellular Healing Processes in Non-Ablative Fractional Laser Wounds.

Lasers Surg Med

Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea.

Published: December 2021

Background And Objectives: Wound healing is an important biomedical problem with various associated complications. Although cutaneous wound healing has been studied in vivo extensively using various optical imaging methods, early-stage cellular healing processes were difficult to study due to scab formation. The objective of this study is to demonstrate that minimal laser wounds and optical microscopy can access the detailed cellular healing processes of cutaneous wounds from the early stage.

Study Design/materials And Methods: A non-ablative fractional laser (NAFL) and label-free two-photon microscopy (TPM) were used to induce minimal cutaneous wounds and to image the wounds in three-dimension. Sixteen hairless mice and a single human volunteer were used. NAFL wounds were induced in the hindlimb skin of the mice and in the forearm skin of the human subject. The NAFL wounds were longitudinally imaged during the healing period, starting from an hour post wound induction in the earliest and until 21 days. Cells in the wound and surrounding normal skin were visualized based on two-photon excited auto-fluorescence (TPAF), and cellular changes were tracked by analyzing longitudinal TPM images both qualitatively and quantitatively. Damage and recovery in the skin dermis were tracked by using the second harmonic generation (SHG) signal of collagen. Immunofluorescence and hematoxylin and eosin histology analysis were conducted to validate the TPM results of the murine skin.

Results: Cellular healing processes in NAFL wounds and surroundings could be observed by longitudinal TPM. In the case of murine skin, various healing phases including inflammation, re-epithelization, granulation tissue formation, and late remodeling phase including collagen regeneration were observed in the same wounds owing to minimal or no scab formation. The re-epithelization process was analyzed quantitatively by measuring cell density and thickness of the epithelium in the wound surroundings. In the case of the human skin, the access inside the wound was blocked for a few days post wound induction due to scabs but the cellular changes in the wound surroundings were observed from the early stage. Cellular healing processes in the NAFL wound of the human skin were similar to those in murine skin.

Conclusions: The minimal NAFL wound model and label-free TPM demonstrated the cell level assessment of wound healing processes with applicability to human subjects. © 2021 Wiley Periodicals LLC.

Download full-text PDF

Source
http://dx.doi.org/10.1002/lsm.23445DOI Listing

Publication Analysis

Top Keywords

healing processes
24
cellular healing
20
wound healing
12
nafl wounds
12
wound
11
healing
10
wounds
9
label-free two-photon
8
two-photon microscopy
8
non-ablative fractional
8

Similar Publications

Genome-wide association study on chronic postsurgical pain in the UK Biobank.

Br J Anaesth

January 2025

Department of Clinical Chemistry, Erasmus Medical Center, Rotterdam, the Netherlands. Electronic address:

Background: Chronic postsurgical pain (CPSP) persists beyond the expected healing period after surgery, imposing a substantial burden on overall patient well-being. Unfortunately, CPSP often remains underdiagnosed and undertreated. To better understand the mechanism of CPSP development, we aimed to identify genetic variants associated with CPSP.

View Article and Find Full Text PDF

Deep cutaneous wounds, which are difficult to heal and specifically occur on dynamic body surfaces, remain a substantial healthcare challenge in clinical practice because of multiple underlying factors, including excessive reactive oxygen species, potential bacterial infection, and extensive degradation of the extracellular matrix (ECM) which further leads to the progressive deterioration of the wound microenvironment. Any available individual wound therapy, such as antibiotic-loaded cotton gauze, cannot address all these issues. Engineering an advanced multifunctional wound dressing is the current need to promote the overall healing process of such wounds.

View Article and Find Full Text PDF

This study aimed to develop novel hydrogels using polycaprolactone (PCL), nano-silver (Ag), and linalool (Lin) to address the challenge of increasing antimicrobial resistance in healing infected wounds. The hydrogels' morphological properties, in vitro release profiles, antibacterial efficacy, and safety were investigated. Hydrogels were prepared from PCL/Ag, PCL/Lin, and PCL/Ag/Lin formulations and applied to infected wounds.

View Article and Find Full Text PDF

Background: This is a novel rat study using native peptide therapy, focused on reversing quadriceps muscle-to-bone detachment to reattachment and stable gastric pentadecapeptide BPC 157 per-oral therapy for shared muscle healing and function restoration.

Methods: Pharmacotherapy recovering various muscle, tendon, ligament, and bone lesions, and severed junctions (i.e.

View Article and Find Full Text PDF

Application of Light-Responsive Nanomaterials in Bone Tissue Engineering.

Pharmaceutics

January 2025

Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai 201300, China.

The application of light-responsive nanomaterials (LRNs) in bone tissue engineering shows broad prospects, especially in promoting bone healing and regeneration. With a deeper understanding of the mechanisms of bone defects and healing disorders, LRNs are receiving increasing attention due to their non-invasive, controllable, and efficient properties. These materials can regulate cellular biological reactions and promote bone cell adhesion, proliferation, and differentiation by absorbing specific wavelengths of light and converting them into physical and chemical signals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!