The rnlAB toxin-antitoxin operon from Escherichia coli functions as an anti-phage defense system. RnlA was identified as a member of the HEPN (Higher Eukaryotes and Prokaryotes Nucleotide-binding domain) superfamily of ribonucleases. The activity of the toxin RnlA requires tight regulation by the antitoxin RnlB, the mechanism of which remains unknown. Here we show that RnlA exists in an equilibrium between two different homodimer states: an inactive resting state and an active canonical HEPN dimer. Mutants interfering with the transition between states show that canonical HEPN dimerization via the highly conserved RX4-6H motif is required for activity. The antitoxin RnlB binds the canonical HEPN dimer conformation, inhibiting RnlA by blocking access to its active site. Single-alanine substitutions mutants of the highly conserved R255, E258, R318 and H323 show that these residues are involved in catalysis and substrate binding and locate the catalytic site near the dimer interface of the canonical HEPN dimer rather than in a groove located between the HEPN domain and the preceding TBP-like domain. Overall, these findings elucidate the structural basis of the activity and inhibition of RnlA and highlight the crucial role of conformational heterogeneity in protein function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8266594PMC
http://dx.doi.org/10.1093/nar/gkab513DOI Listing

Publication Analysis

Top Keywords

canonical hepn
16
hepn dimer
12
required activity
8
activity inhibition
8
antitoxin rnlb
8
highly conserved
8
hepn
7
rnla
6
alternative dimerization
4
dimerization required
4

Similar Publications

The rnlAB toxin-antitoxin operon from Escherichia coli functions as an anti-phage defense system. RnlA was identified as a member of the HEPN (Higher Eukaryotes and Prokaryotes Nucleotide-binding domain) superfamily of ribonucleases. The activity of the toxin RnlA requires tight regulation by the antitoxin RnlB, the mechanism of which remains unknown.

View Article and Find Full Text PDF

HEPN RNases - an emerging class of functionally distinct RNA processing and degradation enzymes.

Crit Rev Biochem Mol Biol

February 2021

Department of Health and Human Services, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.

HEPN (Higher Eukaryotes and Prokaryotes Nucleotide-binding) RNases are an emerging class of functionally diverse RNA processing and degradation enzymes. Members are defined by a small α-helical bundle encompassing a short consensus RNase motif. HEPN dimerization is a universal requirement for RNase activation as the conserved RNase motifs are precisely positioned at the dimer interface to form a composite catalytic center.

View Article and Find Full Text PDF

It takes two (Las1 HEPN endoribonuclease domains) to cut RNA correctly.

J Biol Chem

May 2020

Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709. Electronic address:

The ribosome biogenesis factor Las1 is an essential endoribonuclease that is well-conserved across eukaryotes and a newly established member of the higher eukaryotes and prokaryotes nucleotide-binding (HEPN) domain-containing nuclease family. HEPN nucleases participate in diverse RNA cleavage pathways and share a short HEPN nuclease motif (RφH) important for RNA cleavage. Most HEPN nucleases participate in stress-activated RNA cleavage pathways; Las1 plays a fundamental role in processing pre-rRNA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!