Photodynamic treatment modulates various GTPase and cellular signalling pathways in Tauopathy.

Small GTPases

Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India.

Published: January 2022

The application of photo-excited dyes for treatment is known as photodynamic therapy (PDT). PDT is known to target GTPase proteins in cells, which are the key proteins of diverse signalling cascades which ultimately modulate cell proliferation and death. Cytoskeletal proteins play critical roles in maintaining cell integrity and cell division. Whereas, it was also observed that in neuronal cells PDT modulated actin and tubulin resulting in increased neurite growth and filopodia. Recent studies supported the role of PDT in dissolving the extracellular amyloid beta aggregates and intracellular Tau aggregates, which indicated the potential role of PDT in neurodegeneration. The advancement in the field of PDT led to its clinical approval in treatment of cancers, brain tumour, and dermatological acne. Although several question need to be answered for application of PDT in neuronal cells, but the primary studies gave a hint that it can emerge as potential therapy in neural cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9707546PMC
http://dx.doi.org/10.1080/21541248.2021.1940722DOI Listing

Publication Analysis

Top Keywords

neuronal cells
8
role pdt
8
pdt
7
photodynamic treatment
4
treatment modulates
4
modulates gtpase
4
gtpase cellular
4
cellular signalling
4
signalling pathways
4
pathways tauopathy
4

Similar Publications

Sympathetic nerves regulate nearly all human organs. Their peripheral nerves are present in tumor tissue. Activation of the sympathetic nervous system promotes malignant transformation in several cancers.

View Article and Find Full Text PDF

Understanding the mechanics linking cortical folding and brain connectivity is crucial for both healthy and abnormal brain development. Despite the importance of this relationship, existing models fail to explain how growing axon bundles navigate the stress field within a folding brain or how this bidirectional and dynamic interaction shapes the resulting surface morphologies and connectivity patterns. Here, we propose the concept of "axon reorientation" and formulate a mechanical model to uncover the dynamic multiscale mechanics of the linkages between cortical folding and connectivity development.

View Article and Find Full Text PDF

Oligodendrocyte precursor cells facilitate neuronal lysosome release.

Nat Commun

January 2025

Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany.

Oligodendrocyte precursor cells (OPCs) shape brain function through many non-canonical regulatory mechanisms beyond myelination. Here we show that OPCs form contacts with their processes on neuronal somata in a neuronal activity-dependent manner. These contacts facilitate exocytosis of neuronal lysosomes.

View Article and Find Full Text PDF

Sporadic ALS iPSC-derived motor neurons show axonal defects linked to altered axon guidance pathways.

Neurobiol Dis

January 2025

KU Leuven - University of Leuven, Department of Neurosciences and Leuven Brain Institute (LBI), Leuven, Belgium; Laboratory of Neurobiology, VIB Center for Brain & Disease Research, Leuven, Belgium. Electronic address:

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder characterized by the selective and progressive loss of motor neurons, leading to gradual paralysis and death within 2 to 5 years after diagnosis. The exact underlying pathogenic mechanism(s) remain elusive. This is particularly the case for sporadic ALS (sALS), representing 90 % of cases, as modelling a sporadic disease is extremely difficult.

View Article and Find Full Text PDF

S100 calcium-binding protein A9 (S100A9, also known as calgranulin B) is expressed and secreted by myeloid cells under inflammatory conditions, and S100A9 can amplify inflammation. There is a large increase in S100A9 expression in the brains of patients with neurodegenerative diseases, such as Alzheimer's disease, and S100A9 has been suggested to contribute to neurodegeneration, but the mechanisms are unclear. Here we investigated the effects of extracellular recombinant S100A9 protein on microglia, neurons and synapses in primary rat brain neuronal-glial cell cultures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!