Immunofluorescence (IF) is a powerful investigative tool in biological research and medical diagnosis, whereas conventional imaging methods are always conflict between speed, contrast/resolution, and specimen volume. Chemical sectioning (CS) is an effective method to overcome the conflict, which works by chemically manipulating the off/on state of fluorescent materials and turning on only the extremely superficial surface fluorescence of tissues to realize the sectioning capacity of wide-field imaging. However, the current mechanism of CS is only applicable to samples labeled with pH-sensitive fluorescent proteins and still cannot fulfill samples immunolabeled with frequently used commercial fluorescent dyes. Here, immunofluorescence chemical sectioning (IF-CS) is described to present an off/on mechanism for Alexa dyes by complexation reactions, allowing CS imaging of IF labeled tissues. IF-CS enables IF freeing from out-of-focus interference in wide-field imaging and satisfying with multicolor imaging. IF-CS demonstrates the utility of the 3D submicron-resolution imaging of large immunolabeled tissues on the wide-field block-face system. IF-CS may remarkably facilitate systematic studies of refined subcellular architectures of endogenous proteins in intact biological systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.1c01702 | DOI Listing |
Pak J Pharm Sci
January 2025
The Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
In order to make the drugs can cure the tumor precisely, this paper establishes the tumor immune dynamic model through the differential equation of tumor growth and analyzes the persistence of the tumor immune model. Research on dual anticancer drugs and commonly used coupling methods is carried out to complete the synthesis of polyethylene glycol dual anticancer drug couplers and the antitumor activity is analyzed to derive the degree of inhibition of polyethylene glycol dual anticancer drugs on tumor activity. From the four judging criteria, it was concluded that the polyethylene glycol bis-anti-cancer drug has a better curative effect on tumor cells.
View Article and Find Full Text PDFSci Rep
January 2025
Bio-Circular-Green-Economy Technology and Engineering Center, BCGeTEC, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
Glycerol carbonate (GC) can be produced from glycerol (GL), a low-value byproduct in the biodiesel industry. In this work, continuous processes of GC production via transesterification from crude GL and diethyl carbonate (DEC) were developed using Aspen Plus. Two cases were considered, and their process performances were compared.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
Persian Gulf and Oman Sea Ecological research center, Iranian Fisheries Science Research Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas, Iran.
Environ Toxicol Chem
January 2025
Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada.
Microplastics (< 5 mm) are a diverse class of contaminants ranging in morphology, polymer type, and chemical cocktail. Microplastic toxicity can be driven by one or a combination of these characteristics. Most studies, however, evaluate the physical effect of the most commercially available polymers.
View Article and Find Full Text PDFNutrients
December 2024
Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy.
Background: Oxaliplatin-induced neuropathy (OIN) is a severe painful condition that strongly affects the patient's quality of life and cannot be counteracted by the available drugs or adjuvants. Thus, several efforts are devoted to discovering substances that can revert or reduce OIN, including natural compounds. The carob tree, L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!