A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Understanding Sulfur Redox Mechanisms in Different Electrolytes for Room-Temperature Na-S Batteries. | LitMetric

Understanding Sulfur Redox Mechanisms in Different Electrolytes for Room-Temperature Na-S Batteries.

Nanomicro Lett

Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2500, Australia.

Published: May 2021

This work reports influence of two different electrolytes, carbonate ester and ether electrolytes, on the sulfur redox reactions in room-temperature Na-S batteries. Two sulfur cathodes with different S loading ratio and status are investigated. A sulfur-rich composite with most sulfur dispersed on the surface of a carbon host can realize a high loading ratio (72% S). In contrast, a confined sulfur sample can encapsulate S into the pores of the carbon host with a low loading ratio (44% S). In carbonate ester electrolyte, only the sulfur trapped in porous structures is active via 'solid-solid' behavior during cycling. The S cathode with high surface sulfur shows poor reversible capacity because of the severe side reactions between the surface polysulfides and the carbonate ester solvents. To improve the capacity of the sulfur-rich cathode, ether electrolyte with NaNO additive is explored to realize a 'solid-liquid' sulfur redox process and confine the shuttle effect of the dissolved polysulfides. As a result, the sulfur-rich cathode achieved high reversible capacity (483 mAh g), corresponding to a specific energy of 362 Wh kg after 200 cycles, shedding light on the use of ether electrolyte for high-loading sulfur cathode.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8096878PMC
http://dx.doi.org/10.1007/s40820-021-00648-wDOI Listing

Publication Analysis

Top Keywords

sulfur redox
12
carbonate ester
12
loading ratio
12
room-temperature na-s
8
na-s batteries
8
sulfur
8
reversible capacity
8
sulfur-rich cathode
8
ether electrolyte
8
understanding sulfur
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!