The carrier transport layer with reflection reduction morphology has attracted extensive attention for improving the utilization of light. Herein, we introduced single-layer hollow ZnO hemisphere arrays (ZHAs) behaving light trapping effect as the electron transport layer in perovskite photodetectors (PDs). The single-layer hollow ZHAs can not only reduce the reflection, but also widen the angle of the effective incident light and especially transfer the distribution of the optical field from the ZnO/FTO interface to the perovskite active layer confirmed by the 3D finite-difference time-domain simulation. These merits benefit for the generation, transport and separation of carriers, improving the light utilization efficiency. Finally, our optimized FTO/ZHA/CsPbBr/carbon structure PDs showed high self-powered performance with a linear dynamic range of 120.3 dB, a detectivity of 4.2 × 10 Jones, rise/fall time of 13/28 µs and the f of up to 28 kHz. Benefiting from the high device performance, the PD was demonstrated to the application in the directional transmission of encrypted files as the signal receiving port with super high accuracy. This work uniquely utilizes the features of high-performance self-powered perovskite PDs in optical communication, paving the path to wide applications of all-inorganic perovskite PDs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8187591 | PMC |
http://dx.doi.org/10.1007/s40820-021-00596-5 | DOI Listing |
Small
January 2025
School of Materials & Energy, Southwest University, Chongqing, 400715, P. R. China.
1D moisture-enabled electric generators (MEGs) hold great promise for powering electronic textiles, but their current limitations in power output and operational duration restrict their application in wearable technology. This study introduces a high-performance yarn-based moisture-enabled electric generator (YMEG), which comprises a carbon-fiber core, a cotton yarn active layer with a radial gradient of poly(4-styrensulfonic acid) and poly(vinyl alcohol) (PSSA/PVA), and an aluminum wire as the outer electrode. The unique design maintains a persistent moisture gradient between the interior and exterior electrodes, enhancing performance through the continuous proton diffusion from PSSA and Al⁺ ions from the aluminum wire.
View Article and Find Full Text PDFSmall Methods
January 2025
Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei, 430074, P. R. China.
2D hybrid perovskites have attracted great interest due to their promising potential in photodetectors. The phase structure, dielectric, and excitonic properties in 2D perovskites play a pivotal role in the performance of the corresponding optoelectronic device. Here a lattice anchoring method is demonstrated to boost carrier mobility in 2D perovskites by tailoring large organic spacer cation layers.
View Article and Find Full Text PDFAnal Chem
January 2025
College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China.
Neonicotinoid insecticides have been widely applied in modern agriculture to improve crop productivity, but their residues have adverse impacts on the environment and human health. Hence, to address these issues, a portable self-powered/colorimetric dual-mode sensing platform was developed for the simple, rapid, precise, and sensitive on-site detection of acetamiprid (ATM) residues in vegetables. In this case, a multifunctional bioconjugate with specific recognition capability, excellent enzyme-like activity, and loading capacity is the key to the sensing design.
View Article and Find Full Text PDFSci Adv
January 2025
National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China.
Flexible thermoelectric systems capable of converting human body heat or solar heat into sustainable electricity are crucial for the development of self-powered wearable electronics. However, challenges persist in maintaining a stable temperature gradient and enabling scalable fabrication for their commercialization. Herein, we present a facile approach involving the screen printing of large-scale carbon nanotube (CNT)-based thermoelectric arrays on conventional textile.
View Article and Find Full Text PDFSmall
December 2024
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China.
Triboelectric nanogenerators (TENGs), among the most simple and efficient means to harvest mechanical energy, have great potential in renewable energy utilization. While the output performance of TENGs is still not high enough, which limits its practical application. Here, a poly(vinylidene fluoride) (PVDF)/fluorinated ethylene propylene nanoparticles (FEP NPs) porous nanofiber (PFPN) membrane with waterproof, breathable, surface superhydrophobic and high tribo-negative properties is proposed for achieving high-performance of TENGs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!