Graphitic carbon nitride (g-CN)-based photocatalysts have shown great potential in the splitting of water. However, the intrinsic drawbacks of g-CN, such as low surface area, poor diffusion, and charge separation efficiency, remain as the bottleneck to achieve highly efficient hydrogen evolution. Here, a hollow oxygen-incorporated g-CN nanosheet (OCN) with an improved surface area of 148.5 m g is fabricated by the multiple thermal treatments under the N/O atmosphere, wherein the C-O bonds are formed through two ways of physical adsorption and doping. The physical characterization and theoretical calculation indicate that the O-adsorption can promote the generation of defects, leading to the formation of hollow morphology, while the O-doping results in reduced band gap of g-CN. The optimized OCN shows an excellent photocatalytic hydrogen evolution activity of 3519.6 μmol g h for ~ 20 h, which is over four times higher than that of g-CN (850.1 μmol g h) and outperforms most of the reported g-CN catalysts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8187501PMC
http://dx.doi.org/10.1007/s40820-020-00571-6DOI Listing

Publication Analysis

Top Keywords

hydrogen evolution
12
graphitic carbon
8
carbon nitride
8
highly efficient
8
photocatalytic hydrogen
8
surface area
8
g-cn
5
band engineering
4
engineering morphology
4
morphology control
4

Similar Publications

Enhancing electrocatalytic hydrogen evolution engineering unsaturated electronic structures in MoS.

Chem Sci

December 2024

Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China

The search for efficient, earth-abundant electrocatalysts for the hydrogen evolution reaction (HER) has identified unsaturated molybdenum disulfide (MoS) as a leading candidate. This review synthesises recent advancements in the engineering of MoS to enhance its electrocatalytic properties. It focuses on strategies for designing an unsaturated electronic structure on metal catalytic centers and their role in boosting the efficiency of the hydrogen evolution reaction (HER).

View Article and Find Full Text PDF

To improve water splitting efficiency and enhance energy utilization, it is crucial to develop catalysts with excellent activity, long-term stability, and low cost. In this study, we synthesized a three-dimensional nanostructured amorphous CoMoP/NF bifunctional catalyst for both the hydrogen evolution reaction (HER) and the 5-hydroxymethylfurfural oxidation reaction (HMFOR), using a sacrificial template method. Benefiting from element doping regulation and morphology control, CoMoP/NF exhibited outstanding catalytic activity.

View Article and Find Full Text PDF

Enhancing CO2 Electroreduction to Multicarbon Products by Modulating the Surface Microenvironment of Electrode with Polyethylene Glycol.

Angew Chem Int Ed Engl

January 2025

Institute of Chemistry Chinese Academy of Sciences, Institute of chemistry, Beiyijie number 2, Zhongguancun, 100190, Beijing, CHINA.

Modulating the surface microenvironment of electrodes stands as a pivotal aspect in enhancing the electrocatalytic performance for CO2 electroreduction. Herein, we propose an innovative approach by incorporating a small amount of linear oligomer, polyethylene glycol (PEG), into Cu2O catalysts during the preparation of the CuPEG electrode. The Faradaic efficiency (FE) toward multicarbon products (C2+) increases from 69.

View Article and Find Full Text PDF

Active Hydroxyl-Mediated Preferential Cleavage of Carbon-Carbon Bonds in Electrocatalytic Glycerol Oxidation.

Angew Chem Int Ed Engl

January 2025

Inner Mongolia University, College of Chemistry and Chemical Engineering, 235 West University Street, Saihan District, 010021, Hohhot, CHINA.

Electrocatalytic glycerol oxidation reaction (GOR) to produce high-value formic acid (FA) is hindered by high formation potential of active species and sluggish C-C bond cleavage kinetics. Herein, Ni single-atom (NiSA) and Co single-atom (CoSA) dual sites anchored on nitrogen-doped carbon nanotubes embedded with Ni0.1Co0.

View Article and Find Full Text PDF

Synergizing microfluidics and plasmonics: advances, applications, and future directions.

Lab Chip

January 2025

Department of Chemistry, University of Victoria, Victoria, British Columbia, V8W 2Y2, Canada.

In the past decade, interest in nanoplasmonic structures has experienced significant growth, owing to rapid advancements in materials science and the evolution of novel nanofabrication techniques. The activities in the area are not only leading to remarkable progress in specific applications in photonics, but also permeating to and synergizing with other fields. This review delves into the symbiosis between nanoplasmonics and microfluidics, elucidating fundamental principles on nanophotonics centered on surface plasmon-polaritons, and key achievements arising from the intricate interplay between light and fluids at small scales.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!