Highly Thermo-Conductive Three-Dimensional Graphene Aqueous Medium.

Nanomicro Lett

State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, College of Energy Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, People's Republic of China.

Published: July 2020

AI Article Synopsis

  • 3D graphene structures (3D-GS-CBF) with covalent-bonding nanofins can significantly enhance thermal performance in aqueous mediums, achieving high thermal conductivity levels.
  • The novel structure addresses issues like instability found in conventional graphene networks, remaining stable for six months.
  • Multiscale modeling techniques show that this innovative medium improves solar vapor evaporation rates and outperforms commercial coolants in thermal management.

Article Abstract

Highly thermo-conductive aqueous medium is a crucial premise to demonstrate high-performance thermal-related applications. Graphene has the diamond comparable thermal conductivity, while the intrinsic two-dimensional reality will result in strong anisotropic thermal conductivity and wrinkles or even crumples that significantly sacrifices its inherent properties in practical applications. One strategy to overcome this is to use three-dimensional (3D) architecture of graphene. Herein, 3D graphene structure with covalent-bonding nanofins (3D-GS-CBF) is proposed, which is then used as the filler to demonstrate effective aqueous medium. The thermal conductivity and thermal conductivity enhancement efficiency of 3D-GS-CBF (0.26 vol%) aqueous medium can be as high as 2.61 W m K and 1300%, respectively, around six times larger than highest value of the existed aqueous mediums. Meanwhile, 3D-GS-CBF can be stable in the solution even after 6 months, addressing the instability issues of conventional graphene networks. A multiscale modeling including non-equilibrium molecular dynamics simulations and heat conduction model is applied to interpret experimental results. 3D-GS-CBF aqueous medium can largely improve the solar vapor evaporation rate (by 1.5 times) that are even comparable to the interfacial heating system; meanwhile, its cooling performance is also superior to commercial coolant in thermal management applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7770698PMC
http://dx.doi.org/10.1007/s40820-020-00478-2DOI Listing

Publication Analysis

Top Keywords

aqueous medium
20
thermal conductivity
16
highly thermo-conductive
8
aqueous
6
graphene
5
medium
5
thermal
5
thermo-conductive three-dimensional
4
three-dimensional graphene
4
graphene aqueous
4

Similar Publications

Lipid nanoparticles (LNPs) based messenger RNA (mRNA) therapeutics hold immense promise for treating a wide array of diseases, while their nonhepatic organs targeting and insufficient endosomal escape efficiency remain challenges. For LNPs, polyethylene glycol (PEG) lipids have a crucial role in stabilizing them in aqueous medium, but they severely hinder cellular uptake and reduce transfection efficiency. In this study, we designed ultrasound (US)-assisted fluorinated PEGylated LNPs (F-LNPs) to enhance spleen-targeted mRNA delivery and transfection.

View Article and Find Full Text PDF

Deep eutectic solvents (DESs) have attracted significant attention in recent years due to its environment friendly characteristics and its participation in the multi-heteroatom doping of carbon quantum dots (CQDs). In this work, we present a simple, fast, and environment-friendly microwave synthesis approach for the synthesis of DES-assisted nitrogen and chloride co-doped CQDs (N,Cl-CQDs) using a choline chloride-urea based DES. A biomass-based precursor, i.

View Article and Find Full Text PDF

We serendipitously discovered a novel series of azoheteroarene dyes capable of detecting pH variations in near-neutral solutions. These dyes feature thiazole, thiadiazole, triazole, pyrazole, or benzothiazole heteroaryls linked to hydroxyphenyl azo groups. They exhibit distinctive light absorption properties in aqueous solutions and show notable color changes in a narrow pH range, visible to the naked eye.

View Article and Find Full Text PDF

Natural aging is associated with mild memory loss and cognitive decline, and age is the greatest risk factor for neurodegenerative diseases, such as Alzheimer's disease. There is substantial evidence that oxidative stress is a major contributor to both natural aging and neurodegenerative disease, and coincidently, levels of redox active metals such as Fe and Cu are known to be elevated later in life. Recently, a pronounced age-related increase in Cu content has been reported to occur in mice and rats around a vital regulatory brain region, the subventricular zone of lateral ventricles.

View Article and Find Full Text PDF

Pyrazine (tppz) and 5-sulfosalicylic acid (HSSA) mixed-bridging Cd(II)-CP, {[Cd(HSSA)(tppz)]} (), is highly luminescent, and the emission has been quenched selectively by Al in the presence of other cations, with a limit of detection (LOD) of 43.9 nM (1.18 ppb).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!